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We study the self-similar magnetohydrodynamics (MHD) of a quasi-spherical expanding void (viz. cavity
or bubble) surrounding the centre of a self-gravitating gas sphere with a general polytropic equation of
state. We show various analytic asymptotic solutions near the void boundary in different parameter
regimes and obtain the corresponding void solutions by extensive numerical explorations. We find novel
void solutions of zero density on the void boundary. These new void solutions exist only in a general poly-
tropic gas and feature shell-type density profiles. These void solutions, if not encountering the magneto-
sonic critical curve (MCC), generally approach the asymptotic expansion solution far from the central
void with a velocity proportional to radial distance. We identify and examine free-expansion solutions,
Einstein–de Sitter expansion solutions, and thermal-expansion solutions in three different parameter
regimes. Under certain conditions, void solutions may cross the MCC either smoothly or by MHD shocks,
and then merge into asymptotic solutions with finite velocity and density far from the centre. Our general
polytropic MHD void solutions provide physical insight for void evolution, and may have astrophysical
applications such as massive star collapses and explosions, shell-type supernova remnants and hot bub-
bles in the interstellar and intergalactic media, and planetary nebulae.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Supernova explosions, planetary nebulae and stellar winds from
massive stars are believed to be the main sources of creating voids
(i.e. bubbles, cavities) in the interstellar medium (ISM) (e.g. Fer-
rière, 1998, 2001 and extensive references therein). In the local
ISM, the remnant of a typical isolated supernova grows for
�1.5 Myr and reaches a maximum radius of �50 pc. The shell-type
supernova remnants (SNRs) appear quasi-spherical and the masses
within them have been swept up by ejecta from supernovae. An
example of such structure is a void region towards the Lupus dark
cloud complex, which was revealed through observations of
ll rights reserved.
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100 lm emissions (e.g. Gahm et al., 1990; Franco, 2002) soft X-
ray (e.g. Riegler et al., 1980), and 21 cm HI line (e.g. Colomb
et al., 1984). Neutral hydrogen (HI) voids have also been found in
filled-centre SNRs (e.g. Wallace et al., 1994).

Voids may also emerge long before we actually observe SNRs.
According to the neutrino-driven mechanism of type-II and type-
Ibc supernova explosions (e.g. Janka and Hillebrant, 1989; Janka
and Müller, 1995, 1996), within the first second of a type-II
supernova, the intense neutrino flux generated by the central
core bounce heats the surrounding stellar mass and pushes the
stellar material outwards. Subsequently, a rebound shock
emerges and propagates outwards (e.g. Lou and Wang, 2006,
2007; Hu and Lou, 2009). After several hundred milliseconds,
the neutrino-sphere decouples from the gas, and may leave be-
hind a cavity around the centre during a supernova. After this
decoupling, the exploding star with a central cavity continues
to expand and the central cavity eventually evolves into a hot
bubble in the ISM.
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Massive stars can also create voids in the ISM through photo-
ionization heating and stellar winds (e.g. Castor et al., 1975; Wea-
ver et al., 1977; McKee et al., 1984). Likewise, fast winds from
central compact hot white dwarfs may generate expanding cavities
in planetary nebulae (e.g. Lou and Zhai, 2009a,b). HI voids and
shells have been found and observed by radio observations around
several Galactic Wolf-Rayet (WR) stars – massive stars undergoing
significant mass losses (e.g. Cappa de Nicolau and Niemela, 1984;
Cappa de Nicolau et al., 1986, 1988; Dubner et al., 1990; Niemela
and Cappa de Nicolau, 1991; Arnal and Mirabel, 1991; Arnal,
1992). On larger scales, observations show that voids also exist
in neutral hydrogen discs of spiral galaxies (e.g. Crosthwaite and
Turner, 2000). Recently, central cavities of �200 kpc diameter
and large-scale shock fronts have been revealed by Chandra X-ray
observations in the galaxy cluster MS0735.6+7421 (e.g. McNamara
et al., 2005).

The dynamic evolution of voids in the ISM still lacks a system-
atic theoretical exploration. Dyson and Williams (1997) provided
qualitative description on the gas dynamic effects of massive stars
on the ISM. Chevalier (1997) studied the expansion of a photoion-
ized stellar wind in late stages of stellar evolution (e.g. supernovae
and planetary nebulae; see also Meyer, 1997). From the centre, a
stellar system consists of a hot bubble of shocked fast wind, a re-
gion of shocked and photoionized wind, and an outer region of
slow wind (e.g. Lou and Zhai, 2009a,b). Chevalier (1997) also em-
ployed the isothermal self-similar transformation as Shu (1977)
but without gravity to model the self-similar dynamic evolution
of an outer slow wind. Physically, the fast hot wind bubble resem-
bles the concept of a central void of this paper. Hu and Lou (2008a)
presented self-similar void solutions to model ‘‘champagne flows”
of H II regions after the nascence of a massive protostar in a con-
ventional polytropic gas. Such voids embedded in nebulae can be
created and sustained by fast stellar winds and photoionization
heating. Here, we formulate an MHD problem with a general poly-
tropic gas under self-gravity.

The system of interest is a general polytropic magnetofluid
with a quasi-spherical symmetry under self-gravity, thermal pres-
sure gradient force and magnetic Lorentz force. We further find
that MHD shocks are indispensable to establish sensible global
solutions, for example with the asymptotic velocity at large radii
tending to zero. Magnetic field can be extremely important in
many astrophysical processes on different scales and in particular,
for star formation activities at various stages (e.g. Shu et al., 1987;
Myers, 1998). The Crab Nebula is observed to be supported by the
magnetized pulsar wind (e.g. Lou, 1993; Wolf et al., 2003). When
rotation is sufficiently slow in an astrophysical system, the overall
geometry may remain quasi-spherical and the quasi-spherical
random-field approximation (e.g. Zel’dovich and Novikov, 1971)
can be applicable. Chiueh and Chou (1994) discussed the gravita-
tional collapse of an isothermal magnetized gas cloud by includ-
ing the magnetic pressure force from a randomly distributed
magnetic field. Recently, we have provided detailed analyses by
assuming a random transverse magnetic field with the consider-
ation of both magnetic pressure and tension forces (Yu and Lou,
2005; Yu et al., 2006; Lou and Wang, 2007; Wang and Lou,
2007, 2008). We presume that the non-spherical flows as a result
of the magnetic tension force may be neglected as compared to
the large-scale mean radial bulk motion of gas. The key point is
that the (self-)gravity is strong enough to hold on the entire gas
mass and induce core collapse, or the driving force is strong en-
ough to generate a quasi-spherical void. Therefore, on large scales
a completely random magnetic field contributes to the dynamics
in the form of the average magnetic pressure gradient force and
the average magnetic tension force in the radial direction. This
approximation was discussed in more details by Wang and Lou
(2007).
The general equation of state is p ¼ jðr; tÞqc where p is the
thermal gas pressure, q is the mass density, c is the polytropic in-
dex and j is a proportional coefficient dependent on both radius r
and time t. For a global constant j, the equation of state is that of a
conventional polytropic gas (e.g. Suto and Silk, 1988; Lou and Gao,
2006; Lou and Wang, 2006, 2007; Hu and Lou, 2008a; Lou and
Jiang, 2008; Gao, Lou and Wu, 2009 ; Gao and Lou, 2009). By setting
c ¼ 1 and j as a global constant, a conventional polytropic gas then
becomes an isothermal gas. In case of c > 1:2, novel quasi-static
asymptotic solutions for a polytropic gas exist in approach to the
system centre (see Lou and Wang, 2006). As the specific enthalpy
is p=ðc� 1Þ, we thus require c P 1 to ensure a positive specific en-
thalpy. A general polytropic gas features the conservation of spe-
cific entropy along streamlines. The conventional polytropic case
is a only special case with constant specific entropy everywhere
at all times. A general polytropic model with random magnetic
field is the most general model of a polytropic magnetofluid of
quasi-spherical symmetry under self-gravity (Wang and Lou,
2008; Jiang and Lou, submitted for publication).

Our self-similar transformation employs a dimensionless inde-
pendent similarity variable x defined as a combination of radius r
and time t such that x ¼ r=ðk1=2tnÞ where k is the so-called ‘sound
parameter’ to make x dimensionless and n is a key scaling index.
Theoretically, our void solutions are those solutions whose en-
closed mass is zero within a certain radius denoted as x�. This ra-
dius expands with time in a self-similar manner, i.e. r� ¼ k1=2x�tn.
By this expression, the physical meaning of the self-similar scaling
index parameter n is evident. The expansion speed of the void
boundary is u� / tðn�1Þ; therefore for n > 1, a void expands faster
and faster (i.e. acceleration), while for n < 1, a void expands slower
and slower (i.e. deceleration); and for n ¼ 1, a void expands at a
constant speed. The void boundary may also be regarded as an ide-
alization of a contact discontinuity between a faster wind and a
slower winds (e.g. Chevalier, 1997; Lou and Zhai, 2009a,b).

The case of c ¼ 4=3 corresponds to a relativistically hot gas that
deserves a special attention. Homologous core collapse for a rela-
tivistically hot gas was studied by Goldreich and Weber (1980)
and the behaviour of such system has been treated by Yahil
(1983) as a limit of c! ð4=3Þþ. Recently, Lou and Cao (2008) pre-
sented an illustrative example of void in such a system. In this pa-
per, we study voids for a magnetized Newtonian gas (i.e. c–4=3 in
general), as well as voids in a relativistically hot fluid (i.e. c ¼ 4=3),
and we offer several concrete examples.

This paper is structured as follows. Section 1 is an introduction
to provide background information and the motivation of this
investigation; Section 2 describes first the formulation of a general
polytropic magnetofluid under quasi-spherical symmetry, and sec-
ondly analytic asymptotic solution behaviours near the void
boundary in various parameter regimes, and thirdly various
asymptotic MHD solutions that are useful in constructing global
semi-complete solutions (i.e. solutions that are valid in the range
0 < x < þ1); Section 3 describes and discusses properties of void
solutions with different parameters, in contexts of hydrodynamics
and MHD, and presents a few examples; Section 4 gives examples
of astrophysical applications of such void solutions. Finally, Section
5 contains conclusions and discussion. Mathematical derivations
are included in an appendix.
2. Self-similar MHD with quasi-spherical symmetry

2.1. Formulation of a non-linear MHD problem

The MHD evolution of a general polytropic gas of quasi-spheri-
cal symmetry and under self-gravity can be described by a set of
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non-linear MHD partial differential equations (PDEs) in spherical
polar coordinates ðr; h;/Þ, namely
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where qðr; tÞ is the mass density, uðr; tÞ is the bulk radial gas flow
speed, Mðr; tÞ is the enclosed mass within radius r at time t;p is
the thermal gas pressure, G ¼ 6:67� 10�8 dyne cm2 g�2 is the grav-
itational constant, and hB2

t i is the ensemble average of a random
transverse magnetic field squared (i.e. proportional to the magnetic
energy density). Eqs. (1) and (2) represent mass conservation, lead-
ing to @M=@t þ u@M=@r ¼ 0. We assume a random magnetic field
mainly in transverse directions, and the magnetic force perpendic-
ular to magnetic field lines directs to the radial direction and ap-
pears in the radial momentum Eq. (3) as the magnetic pressure
and tension terms. Together with magnetic induction equation
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with c being the polytropic index, we complete the model formula-
tion for a general polytropic MHD with a quasi-spherical symmetry
(Wang and Lou, 2007, 2008).

In this paper, we consider self-similar solutions which form an
important subclass of non-linear MHD PDEs. In order to reduce
these non-linear MHD PDEs to self-similar ordinary differential
equations (ODEs), we introduce the following self-similar transfor-
mation as Wang and Lou (2008), namely

r ¼ k1=2tnx; u ¼ k1=2tn�1v; q ¼ a
4pGt2 ; p ¼ kt2n�4

4pG
b;

M ¼ k3=2t3n�2m
ð3n� 2ÞG ; hB2

t i ¼
kt2n�4w

G
; ð6Þ

where vðxÞ;aðxÞ;bðxÞ;mðxÞ;wðxÞ are dimensionless reduced vari-
ables of x only. We refer to vðxÞ;aðxÞ;bðxÞ;mðxÞ and wðxÞ as the re-
duced radial speed, mass density, thermal pressure, enclosed mass
and magnetic energy density, respectively. Self-similar transforma-
tion (6) is identical with that of Wang and Lou (2007, 2008). By
substituting self-similar transformation (6) into Eqs. (1)–(5), we ob-
tain several valuable integrals

w ¼ ha2x2; ð7Þ
b ¼ Cacmq; ð8Þ
m ¼ ax2ðnx� vÞ: ð9Þ

Eq. (7) corresponds to the frozen-in condition for magnetic field in
the ideal MHD approximation, where h � hB2

t i=ð16p2Gq2r2Þ is a
dimensionless magnetic parameter representing the average
strength of a random transverse magnetic field.

Eq. (8) is the self-similar form of the specific entropy conserva-
tion along streamlines, where the exponent parameter
q � 2ðnþ c� 2Þ=ð3n� 2Þ and thus c ¼ 2� nþ ð3n� 2Þq=2, and C
is an arbitrary coefficient from integration. For q ¼ 0, the flow sys-
tem involves a conventional polytropic gas with a constant specific
entropy everywhere in space and at all times; for q > 0, the specific
entropy increases from inside (smaller x) to outside (larger x); and
q ¼ 2=3 leads to c ¼ 4=3 for a relativistically hot gas (e.g. a photon
gas, a neutrino gas or an extremely high temperature electron gas)
with an arbitrary C. Actually we may set C ¼ 1 in all cases with
q–2=3 without loss of generality, because an adjustment of sound
parameter k in self-similar transformation (6) to C1=ð1�3q=2Þk would
make C disappear.

Eq. (9) requires both 3n� 2 > 0 and nx� v > 0 for a positive en-
closed mass Mðr; tÞ. When nx� v ¼ 0 at a certain x�, the enclosed
mass vanishes by Eq. (9); this is referred to as a void with x� being
the void boundary in a self-similar expansion. Accordingly, the re-
duced radial velocity on the boundary is given by v� ¼ nx�. The con-
dition nx� v ¼ 0 on the void boundary implies that the self-similar
expansion speed of the void boundary dr�=dt is equal to the radial
flow velocity on the void boundary uðr�; tÞ. This is regarded as the
physical condition for a contact discontinuity between the outer
slower stellar wind and the inner faster wind driving a hot bubble
by Chevalier (1997) for q ¼ 0;n ¼ 1; c ¼ 1 and without gravity. Lou
and Zhai (2009a,b) considered a gas dynamic model for planetary
nebulae with contact discontinuities for an isothermal self-gravi-
tating gas. From now on, we denote variables on the void boundary
by a superscript asterisk �.

Combining all equations above, we obtain coupled non-linear
MHD ODEs for the two first derivatives a0 and v0 in the following
compact forms of

Xðx;a; vÞa0 ¼Aðx;a; vÞ; Xðx;a; vÞv0 ¼Vðx;a; vÞ; ð10Þ

where the three functional coefficients X;A and V are explicitly
defined by

Xðx;a; vÞ � C 2� nþ ð3n� 2Þ
2
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The formulation above is largely the same as Wang and Lou
(2008), except for an additional free parameter C in cases with
q ¼ 2=3 (i.e.c ¼ 4=3). The ODEs above with specified boundary con-
ditions can be solved by the standard Runge-Kutta method (e.g.
Press et al., 1986). Wang and Lou (2008) also provides procedures
to determine magnetosonic critical curve (MCC), eigensolutions
across the MCC and MHD shock jump conditions across the mag-
netosonic singular surface (see Appendix A).

The MCC for q ¼ 2=3 and thus c ¼ 4=3 is special. Extensive
numerical explorations suggest that the MCC bears the simple
form of v ¼ gx;a ¼ constant, where g is a constant coefficient
dependent on parameters n;h and proportional factor C. Substitut-
ing this form into Eq. (11) and the MCC conditions X ¼ 0 and
A ¼ 0 become, respectively,

a ¼ ðn� gÞ2

hþ ð4=3ÞCðn� gÞ2=3 ; ð12Þ

2
3

Caðn� gÞ�1=3ð2� 3nÞ þ 2ð1� gÞðn� gÞ

¼ ðn� gÞgþ ðn� gÞ
ð3n� 2Þaþ 2ha: ð13Þ
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Substituting relation (12) into Eq. (13) to eliminate a, we immedi-
ately derive an expression for the constant coefficient g in terms
of n;h and C. Once g is known in relation (12), we can compute a
value accordingly. With h ¼ 0, relations (12) and (13) give the same
solution as discussed in Lou and Cao (2008) for a non-magnetized
relativistically hot gas. Here, we extend the special MCC with
c ¼ 4=3 to a magnetofluid embedded with a random transverse
magnetic field.

2.2. Behaviours of a polytropic void boundary

We now analyze asymptotic behaviours around the void bound-
ary x�, and these boundary conditions will be used to construct var-
ious solutions in numerical integrations starting from the void
boundary.

The gas pressure should be continuous across the void bound-
ary, otherwise a shrinkage of the void boundary with diffusions
would be expected. According to Eq. (8) and for a – 0, inequality
q < 0 on nx� � v ¼ 0 leads to a diverging reduced pressure b. For
q P 0, it follows automatically that b ¼ 0 at the void boundary.
Therefore, to ensure b� � bðx�Þ ¼ 0, we require a� � aðx�Þ ¼ 0 in
cases of q < 0, or a� P 0 in cases of q P 0. It is favorable to further
require the continuity of mass density, as a discontinuous density
would lead to a local diffusion, in addition to a global self-similar
evolution. Therefore, a solution with a ¼ 0 at nx� � v ¼ 0 is re-
garded as a physically sensible one, otherwise the self-similar solu-
tion should be seen as an asymptotic solution valid in the region
sufficiently far from the void boundary.

2.2.1. Hydrodynamic and MHD cases with a� ¼ 0 on the expanding
void boundary

The void boundary obeying a ¼ 0 and nx� v ¼ 0 may possibly
become a critical curve with the three functional coefficients on
both sides of Eq. (10) being zero. According to Eq. (11), the possible
non-zero terms of the three functional coefficients X;A and V

approaching the void boundary nx� v ¼ 0 and a ¼ 0 are the ther-
mal pressure gradient force terms, namely

X � Ccx2qacþq�1ðnx� vÞq;
A � Cð2� 3nÞqx2qacþqðnx� vÞq�1

;

V � C½2ð1� nÞcþ ð2� 3nÞq�x2qacþq�1ðnx� vÞq; ð14Þ

where we have used the relation c ¼ 2� nþ ð3n� 2Þq=2.
According to expressions (14), the parameter regime of

q P 0; cþ q P 1, except for the special isothermal case
(q ¼ 0; cþ q ¼ 1), ensures the vanishing of X and V on the void
boundary; when a � ðnx� vÞ near the void boundary as shown
by our analysis presently, then A also vanishes at the void bound-
ary, and the void boundary indeed becomes a MCC.

By a local first-order Taylor series expansion, we obtain from
Eqs. (10) and (11) two pairs of eigensolutions for the first deriva-
tives of vðxÞ and aðxÞ across the void boundary as a critical curve.
The one that ensures positive enclosed mass is

v0jx� ¼ �2þ 2
ffiffiffi
2
p� �
ðn� 1Þ;

a0jx� ¼
ffiffiffi
2
p ð2� nÞ
ð3n� 2Þqþ

1
2

� �
ðn� 1Þ2 n

hx�
: ð15Þ

It can be shown that for n–1, all points on this critical curve are
saddle points (e.g. Jordan and Smith, 1977). It is known that around
a saddle singular point, only solutions along the direction defined
by eigensolutions are allowed. Therefore, for a� ¼ 0 at the void
boundary, the self-similar solutions would follow the behaviour
described by expression (15). The presence of magnetic field is cru-
cial here. In a purely hydrodynamic case of h ¼ 0 or a conventional
polytropic case of q ¼ 0, the reduced density gradient a0 diverges at
the void boundary x ¼ x�. It would require additional consider-
ations for a void boundary on which the mass density vanishes
but its first derivative diverges. To better describe a sudden change
of mass density on the void boundary, we would then set a non-
zero mass density a�–0 at the void boundary (see analyses in the
following sections). The valid regime of parameters in which solu-
tion (15) stands is therefore q > 0; cþ q P 1 and h > 0. As we
should further require c P 1 for a positive enthalpy, the valid re-
gime of parameters is simply q > 0 and h > 0.

If the three functional coefficients X;A and V do not vanish at
the void boundary, the leading terms of the first derivatives of v
and a at the void boundary are then

v0jx� ¼ 2ð1� nÞ þ ð2� 3nÞq=c; ð16Þ

a0jx� ¼
ð2� 3nÞq

c
a

ðnx� vÞ ¼ �
qa
ðcþ qÞ ðx� x�Þ�1

: ð17Þ

Note the coefficient C disappears in these two expressions. The
second equality for a0 in Eq. (17) involves Eq. (16). The asymptotic
solution of a near the void boundary is

a ¼ Kðx� x�Þ�q=ðcþqÞ þ � � � ; ð18Þ

where K is an arbitrary integration constant referred to as the void
density parameter. To ensure solution (18) going to zero in the limit
of x! x�, we require q=ðcþ qÞ < 0. We now verify that for such
solutions, X;A and V actually diverge at the void boundary. With
solutions (16)–(18), we have X � ðx� x�Þq=ðcþqÞ

; V � ðx� x�Þq=ðcþqÞ
;

A � ðx� x�Þ�1. Therefore, the condition q=ðcþ qÞ < 0 in the mean-
time ensures the validity of the asymptotic solution. We should
require c P 1 as a physical requirement and thus inequality
q=ðcþ qÞ < 0 is equivalent to q < 0 and cþ q > 0.

A positive enclosed mass requires v0jx� < n, which provides a
lower limit for the index q, namely

q > qmin ¼
4þ 3n2 � 8n
3nð3n=2� 1Þ ¼

2ðn� 2Þ
3n

; ð19Þ

where n� 2 < 0. With algebraic manipulations, it is proven that
inequality (19) together with c P 1 is equivalent to inequality
cþ q > 0. Thus within the parameter regime of q < 0 and
cþ q > 0 where solutions (16)–(18) stand, inequality v0jx� < n is
automatically satisfied.

In summary, in the vicinity of the void boundary nx� v ¼ 0
with a ¼ 0, we find two possible types of asymptotic solutions.
The parameter regimes in which these solutions are applicable
are shown in Fig. 1 accordingly. With q > 0 (the heavy-shaded zone
in the first quadrant of Fig. 1) and h > 0 (magnetized), the asymp-
totic solution takes form (15), referred to as LH1 solutions. With
q < 0; cþ q > 0 (the light-shaded zone in the second quadrant of
Fig. 1), the asymptotic solution takes form (16)–(18), referred to
as LH2 solutions. For other regimes of parameters, no void solu-
tions with boundary condition nx� v ¼ 0 and a ¼ 0 are found.
The isothermal case and the conventional polytropic case do not
satisfy either of these two requirements, so they need additional
considerations for asymptotic solutions near the void boundary
with a� – 0 (e.g. Hu and Lou, 2008a; Lou and Zhai, 2009a,b). Hence,
the novel LH1 and LH2 void solutions only exist in general poly-
tropic MHD cases with q > 0 and q < 0, respectively. LH1 void
solutions require the presence of magnetic field, while LH2 solu-
tions remain valid in the purely hydrodynamic case as well.

2.2.2. Hydrodynamics of a� > 0 at the void boundary
The situation with a� – 0 at the void boundary is intrinsically

different. In such cases, we require q P 0 to ensure the pressure
going to zero at the void boundary. One can then numerically inte-
grate coupled non-linear ODEs (10) and (11) directly from the void
boundary to construct solutions. The possible singularity at the



Fig. 1. Regimes of parameters q and c for which asymptotic solutions near the void
boundary are applicable. The horizontal axis is the parameter q and the vertical axis
is the polytropic index c. The solid line is for cþ q ¼ 0. The vertical axis of q ¼ 0
corresponds to the conventional polytropic case (nþ c ¼ 2) and the point
q ¼ 0; c ¼ 1 (n ¼ 1) corresponds to the isothermal case. The light-shaded zone in
the second quadrant is the regime to apply asymptotic solution (16)–(18) and the
heavy-shaded zone in the first quadrant is the regime to apply asymptotic solution
(15). We only draw the c > 0 part out of physical consideration; in fact, we should
always require c P 1 to ensure a positive specific enthalpy.
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void boundary, and the corresponding leading terms for X;A and
V approaching the void boundary nx� v ¼ 0 depend largely on
parameter q. We find that q ¼ 0 for a conventional polytropic gas
is a special case giving a different expression of the asymptotic
behaviour at the void boundary. We examine below two situations
of q ¼ 0 and of q > 0 separately.

Case of q ¼ 0: In the q ¼ 0 case, the formulation is simplified
considerably and we return to the conventional polytropic case
of nþ c ¼ 2. For non-magnetic cases of h ¼ 0, the asymptotic solu-
tion approaching the void boundary is

v ¼ nx� þ 2ð1� nÞðx� x�Þ þ � � � ; ð20Þ

a ¼ a� þ nð1� nÞ
c

a�nx�ðx� x�Þ þ � � � ; ð21Þ

where x� denotes the void boundary in a self-similar expansion and
a� denotes the reduced mass density on the expanding void bound-
ary. This solution is the same as the void solution in Hu and Lou
(2008a). Expression (21) hints that, if a� ¼ 0, then the solution be-
comes aðxÞ ¼ 0 everywhere for all x, and this is indeed so. Again,
a� ¼ 0 is not allowed for a conventional polytropic gas. In this case,
no apparent singularity is found near the void boundary, and both
terms ðnx� vÞ and ða� a�Þ scale as ðx� x�Þ, which we denote as
Type-N (Normal) void behaviour. Note that LH1 void solutions rep-
resent also a Type-N void behaviour.

Series expansion solutions (20) and (21) become insufficient for
n ¼ 1. In this isothermal case of q ¼ 0 and n ¼ 1 (c ¼ 1), we can ob-
tain asymptotic solutions near the void boundary to a higher order.
The leading terms of v0 as x! x� yield

v0jx� ¼
2
x�
ðx� vÞ: ð22Þ

We then obtain the leading terms of v and a as x! x�

v ¼ x� þ 1
x�
ðx� x�Þ2 þ � � � ; ð23Þ

a ¼ a� � a�2

2
ðx� x�Þ2 þ � � � : ð24Þ

No singularity appears in the isothermal case (as the Type-N behav-
iour) but the term ðnx� vÞ has the leading order of magnitude
ðx� x�Þ2, which we refer to as the Type-N2 void boundary (see
Lou and Zhai, 2009a,b for isothermal voids in self-similar
expansion).
Cases of q > 0: In such cases, the leading terms of functional
coefficients X;A and V are also the thermal pressure terms as
in Eq. (14), and then v0jx� and a0jx� are the same as expressions
(16) and (17). Therefore, the asymptotic form of a approaching
the void boundary is the same as Eq. (18), viz.
a ¼ Kðx� x�Þ�q=ðcþqÞ where K is the void density parameter. The first
derivative of v in these cases tends to a certain value on the void
boundary and the term nx� v has the leading order of magnitude
x� x�.

As q > 0 in this case, a diverges on the void boundary. Here a
sharp discontinuity in mass density exists across the void bound-
ary. We verify in turn that the divergence of a does not affect the
leading terms of functional coefficients X;A and V and the valid-
ity of expressions (16) and (17). Despite this divergence, mðxÞ re-
mains continuous at x ¼ x� (Eq. (9)) and the asymptotic solution
with such singularity is physically allowed. We refer to such
asymptotic solution on the void boundary as the Type-D (diffusion)
void behaviour.

We may regard the void boundary as a translation of centre
along the streamline nx� v ¼ 0. Previous asymptotic solutions at
x ¼ 0 give either a zero a or a divergent a obeying power-law
(e.g. a / x�3=2 for free-fall solutions, see Lou and Wang, 2007). Here
on a void boundary, the power-law index of the asymptotic a de-
pends on parameter q. In terms of physics, a local diffusion process
may smooth out this singularity, bearing in mind that self-similar
behaviours will be modified by local diffusions near the void
boundary in self-similar expansion. Relevant comments on this
may be found in Lou and Cao (2008) and Lou and Zhai (2009a,b).

With q ¼ 0 in expressions (16) and (17), we have the same v0 jx�
as Eq. (20) and a� ¼ K . In fact, the q ¼ 0 case (Type-N; a tends to a
positive constant) is a transitional case between q < 0 (LH2, a
tends to zero at the void boundary) and q > 0 (Type-D; a diverges
at the void boundary). So far we have provided sensible void solu-
tions for purely hydrodynamic cases with different q values. For all
such solutions, the thermal pressure force becomes dominant near
the void boundary. Without magnetic field, the thermal pressure is
the key factor in determining the dynamics near the void boundary
as it should be.

2.2.3. MHD cases with a� – 0 at the void boundary
In such cases, we first require q P 0 to ensure the pressure

approaching zero at the void boundary. With h > 0 in Eqs. (10)
and (11), the leading terms in the vicinity of a void boundary is dif-
ferent from the hydrodynamic case. In the presence of magnetic
field, the magnetic force becomes dominant at the void boundary
and diffusion behaviours (Type-D) of the void boundary do not ap-
pear. The void boundary generally shows no singularity in these
MHD cases. There are four distinct situations described below in
different regimes of q parameter.

Case q ¼ 0 for a conventional polytropic gas: In such cases of con-
ventional polytropic MHD, additional terms associated with the
magnetic force appear in the asymptotic solution, having a similar
form parallel to hydrodynamic expressions (20) and (21),

v ¼ nx� þ 2ða�Þð1�nÞð1� nÞc
ða�Þð1�nÞcþ ha�ðx�Þ2

ðx� x�Þ þ � � � ; ð25Þ

a ¼ a� � nðn� 1Þa� þ 2hða�Þ2

cða�Þð1�nÞ þ ha�ðx�Þ2
x�ðx� x�Þ þ � � � : ð26Þ

Setting h ¼ 0 in solutions (25) and (26), we retrieve solutions (20)
and (21) as a necessary check. This MHD solution manifests a
Type-N void behaviour and the Type-N2 void behaviour of the iso-
thermal case disappears.

Cases of 0 < q < 1: In such cases, the presence of magnetic field
becomes the leading term approaching the void boundary, and the
first derivatives of v and a are, respectively,
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v0jx� ¼
2ð1� nÞ

a�
; ð27Þ

a0jx� ¼ C
qð2� 3nÞ

h
ða�Þ1�nþ3nq=2ðx�Þ2q�2ðnx� vÞq�1

: ð28Þ

Eq. (28) gives the leading term of the asymptotic solution of a near
the void boundary as

a ¼ a� þ C
ð2� 3nÞ

h
ða�Þcðx�Þ2q�2ða�nþ 2n� 2Þq�1ðx� x�Þq � � � :

ð29Þ

To ensure the validity of this solution, we should require v0jx� < n for
a positive mass. For n P 1, this condition is satisfied automatically,
while for n < 1, the condition implies a�nþ 2n� 2 > 0 or equiva-
lently n > 2=ð2þ a�Þ. No apparent singularity exists in this solution
and the term ða� a�Þ scales as ðx� x�Þq. We refer to this asymptotic
solution as Type-Nq void behaviour.

Cases with q ¼ 1: The asymptotic behaviour of v near the void
boundary is the same as Eq. (27), while the first derivative of a
becomes

a0jx� ¼
ða�Þ1þn=2x�ð2� 3nÞ � ðn� 1Þn� 2ha�

hx�
; ð30Þ

giving a Type-N behaviour near the void boundary. For h! 0, the
first derivative a0 would diverge.

Cases with q > 1: The asymptotic behaviour of v near the void
boundary remains the same as Eq. (27), while the first derivative
of a becomes

a0jx� ¼ �
ðn� 1Þnþ 2ha�

hx�
; ð31Þ

again giving a Type-N behaviour near the void boundary.
In different parameter regimes of q;n (or c) and h, we have ob-

tained different types of asymptotic behaviours near the void
boundary and different expressions of asymptotic solutions. We
summarize these results in Table 1 for reference.
2.3. Asymptotic self-similar solutions at large x

Prior studies have revealed various asymptotic self-similar solu-
tions of a quasi-spherical magnetofluid under self-gravity. At small
x, we have derived quasi-magnetostatic asymptotic solutions (Lou
and Wang, 2006, 2007; Wang and Lou, 2007 with q ¼ 0; Wang and
Lou, 2008 with q – 0), central MHD free-fall solutions (Shu, 1977
for an isothermal gas; Suto and Silk, 1988 for a conventional poly-
tropic gas; Wang and Lou, 2008 for a general polytropic gas),
strong-field asymptotic MHD solutions (Yu and Lou, 2005 for an
isothermal gas; Lou and Wang, 2007 for a conventional polytropic
gas; Wang and Lou, 2008 for a general polytropic gas). At large x,
we have asymptotic MHD solutions described below.
Table 1
Summary of asymptotic solution behaviours near the self-similar void boundary nx� v ¼ 0
corresponding asymptotic solution. The properties of different types of solutions on the v

q h ¼ 0

q ¼ 0 Type-N (20) and (21); Type-N2
0 < q < 1 Type-D (16) and (17)
q ¼ 1 Type-D (16) and (17)
q > 1 Type-D (16) and (17)

	 Type-N: a tends to a non-zero finite value; and ða� a�Þ and ðv� v�Þ scale as ðx� x�Þ
	 Type-N2: a tends to a non-zero finite value; and ða� a�Þ and ðv� v�Þ scale as ðx� x�

	 Type-Nq: a tends to a non-zero finite value; ða� a�Þ scales as ðx� x�Þq; and ðv� v�Þ
	 Type-D: a diverges and scales as ðx� x�Þ�q=ðcþqÞ; and ðv� v�Þ scales ðx� x�Þ.
2.3.1. Asymptotic MHD solutions of finite density and velocity in the
regime of large x

In this case, the gravitational force, the magnetic force (i.e. the
magnetic pressure and tension forces together), and the thermal
pressure force are in the same order of magnitude at large x. The
asymptotic solutions at large x are given by Wang and Lou
(2008), namely

a ¼ Ax�2=n þ � � � ;

v ¼ Bx1�1=n þ � n
ð3n� 2Þ þ

2hðn� 1Þ
n

� �
A

	

þ2ð2� nÞnq�1A1�nþ3nq=2
o

x1�2=n þ � � � ; ð32Þ

where A and B are two constants of integration, referred to as the
mass and velocity parameters, respectively. To ensure the validity
of solution (32), we require 2=3 < n 6 2 (note that inequality
n > 2=3 is directly related to self-similar transformation (6) and a
positive enclosed mass). In case of 2=3 < n 6 1, the mass and
velocity parameters A and B are fairly arbitrary. In case of
1 < n 6 2, velocity parameter B should vanish to ensure that v
tends to zero at large x. This valid range of scaling parameter n cor-
responds to q / r�3 to q / r�1. For the dynamic evolution of proto-
stellar cores in star-forming clouds, power-law mass density
profiles should fall within this range. This appears to be consistent
with observational inferences so far (e.g. Osorio et al., 1999; Franco
et al., 2000; McKee and Tan, 2002).

Furthermore, by setting v ¼ 0 in MHD ODEs (10) and (11), we
readily obtain an exact global solution in a magnetostatic equilib-
rium, namely

a ¼ A0x�2=n; ð33Þ

where the proportional coefficient A0 is given by

A0 ¼
n2 � 2ð2� nÞð3n� 2Þh

2ð2� nÞð3n� 2Þ n�q

� ��1=ðn�3nq=2Þ

: ð34Þ

This describes a more general magnetostatic singular polytrop-
ic sphere (SPS) with a substantial generalization of q–0; the case
of q ¼ 0 or nþ c ¼ 2 is included here and corresponds to a con-
ventional polytropic gas of constant specific entropy everywhere
at all times (Lou and Wang, 2006, 2007; Wang and Lou, 2007,
2008).

2.3.2. Asymptotic MHD thermal-expansion solutions
At large x, the pressure may become dominant in certain situa-

tions (Wang and Lou, 2008). Thus we may drop the magnetic and
gravity force terms in ODEs (10) and (11). By assuming v � cxþ b
and a � ExP with c; E and P being three constant coefficients, ODEs
(10) and (11) then lead to
and a – 0. In each case, we show the behaviour type and then equation numbers of the
oid boundary are described below the table.

h – 0

(23) and (24) Type-N (25) and (26)
Type-Nq (27) and (28)
Type-N (27) and (30)
Type-N (27) and (31)

.

Þ2.

scales ðx� x�Þ.
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P ¼ � ð3q� 2Þ
ð1� nþ 3nq=2Þ ;

E1�nþ3nq=2ðn� cÞqð2þ PÞ ¼ cð1� cÞ;

P ¼ ð3c � 2Þ
ðn� cÞ ; ð35Þ

where the three constant coefficients ðc; E; PÞ can be determined by
Eq. (35). This solution for MHD thermal-expansion is valid for
q > 2=3 as we need a power-law exponent P < 0 for a converging
aðxÞ at large x. We note that for a certain system whose parameters
are predefined, only one thermal-expansion solutions at large x is
allowed, except for a free parameter b. Actually, a translation on v
will not alter the structure of the solutions. The radial bulk flow
speed at large x is

u ¼ c
r
t
: ð36Þ

At a certain time t, the radial flow speed is simply proportional to r.
There is a qualitatively similar flow speed profile in the special case
of c ¼ 4=3 for a relativistically hot gas (Goldreich and Weber, 1980;
Lou and Cao, 2008; Cao and Lou, 2009).

2.3.3. MHD free-expansion solution
In cases of q < 2=3, numerical exploration suggests an expan-

sion solution in the asymptotic form of

v! 2
3

xþ b; a! a1; as x! þ1; ð37Þ

where a1 is a constant value of a at large x. With the radial velocity
proportional to the radius in asymptotic form (37) and q < 2=3, the
pressure gradient terms in non-linear MHD ODEs (10) and (11) can
be dropped and the leading terms of the three coefficients X, A and
V as x! þ1 are

X � hax2 � ðnx� vÞ2;

A � 2
x� v

x
aðnx� vÞ � a ðn� 1Þvþ ðnx� vÞ

ð3n� 2Þaþ 2hax
� �

;

V � 2
ðx� vÞ

x
hax2 � ðnx� vÞ ðn� 1Þvþ ðnx� vÞ

ð3n� 2Þaþ 2hax
� �

; ð38Þ

respectively. To obtain asymptotic solution (37), we require A! 0
and V=X! 2=3. The constant a1 then obeys the following relation:

ð1þ 6hÞa2 � 2a=3 ¼ 0: ð39Þ

Eq. (39) has only one non-trivial solution, namely

a1 ¼
2

3ð1þ 6hÞ : ð40Þ

We substitute this a1 into condition V=X! 2=3 and find that
this condition is satisfied. The other solution a1 ¼ 0 is indeed triv-
ial and does not satisfy condition V=X! 2=3. In summary, we ver-
ify the existence of asymptotic expansion solution (37) in the
regime q < 2=3 and the constant value a1 is given by Eq. (40).
For such an expansion solution, the pressure gradient is negligible,
we thus refer to such expansion solution as the ‘free-expansion’
solution. The ‘free-expansion’ solution is the counterpart of ther-
mal-expansion solution for q < 2=3, as shown in this paper. The
constant a1 depends not on parameter n, but on magnetic param-
eter h. With a larger h (i.e. a stronger magnetic field), the constant
asymptotic density is lower.

2.3.4. The MHD Einstein–de Sitter solution
There exists a special exact semi-complete global solution re-

ferred to as the MHD Einstein–de Sitter solution, having the form
of v ¼ 2x=3 and a ¼ constant for all x. Wang and Lou (2007) de-
scribed this solution for the case of a conventional polytropic mag-
netofluid (i.e. q ¼ 0). The form of this MHD Einstein–de Sitter
solution is

v ¼ 2
3

x; a ¼ 2
3ð1þ 6hÞ ;

m ¼ n� 2
3

� �
2x3

3ð1þ 6hÞ ; q ¼ 0; ð41Þ

where n > 2=3. Compared with free-expansion solution (37) and a1
value (40), we find that the ‘free-expansion’ solution naturally be-
comes the MHD Einstein–de Sitter solution with q ¼ 0. We extend
the consideration to the general polytropic form adopted in this
investigation. By setting v ¼ 2x=3;a ¼ const in non-linear MHD
ODEs (10) and (11), it is clear that only q ¼ 2=3 (i.e. c ¼ 4=3 with
an allowed range of n), in addition to the case of q ¼ 0, will make
the solution valid for all x.

We have the novel MHD Einstein–de Sitter solution as

v ¼ 2
3

x; a ¼ 2
3

1

6hþ 1þ 6Cðn� 2=3Þ2=3 ;

m ¼ 2
3

ðn� 2=3Þx3

6hþ 1þ 6Cðn� 2=3Þ2=3 ; q ¼ 2
3
; ð42Þ

where n > 2=3. Comparing with equation (80) of Wang and Lou
(2007), we have a more general form of Einstein–de Sitter solutions
for a relativistically hot gas, for which the gravity and magnetic
forces cannot be neglected with respect to the pressure force. Lou
and Cao (2008) studied a similar relativistically hot gas of spherical
symmetry with another self-similar transformation and derive an-
other form of Einstein–de Sitter solution (36) of Lou and Cao
(2008). With the freedom to choose C parameter, which is linked
with parameter C0 in Lou and Cao (2008), these two forms of Ein-
stein–de Sitter solution are equivalent for h ¼ 0. It is interesting
to observe that such globally exact Einstein–de Sitter solution can
only exist either in a conventional polytropic gas or in a relativisti-
cally hot gas.

We have explored above asymptotic expansion solutions in dif-
ferent q regimes and derived three kinds of expansion solutions.
With q < 2=3, the thermal pressure can be neglected and the
free-expansion solution stands; with q > 2=3, the gravitational
and magnetic forces can be neglected and the thermal-expansion
solution stands; with q ¼ 2=3, all the three forces are comparable
and the Einstein–de Sitter solution is an exact global solution. Here
we see that q ¼ 2=3 separates different situations of self-similar
expansion behaviour. All these expansion solutions have velocity
proportional to the radius. For the free-expansion and Einstein–
de Sitter solutions, v ¼ 2x=3 and a is equal to a certain constant,
while for the thermal-expansion solution, v ¼ cx and a converges
to zero at large x. We will see presently that in general MHD void
solutions merge into one kind of expansion solutions (determined
by q parameter) far from the flow centre, if the MCC is not
encountered.
3. Hydrodynamic and MHD void solutions with a� ¼ 0

3.1. Hydrodynamic cases

In purely hydrodynamic cases with h ¼ 0, LH1 void solutions do
not exist and we consider only LH2 void solutions. The parameter
regime for LH2 void solutions is q < 0 and cþ q > 0. To illustrate
LH2 void solutions by examples, we choose a set of parameters
as ðn ¼ 0:75; q ¼ �0:5; c ¼ 1:1875; h ¼ 0Þ and construct LH2 void
solutions with assigned values of void boundary x� and density
parameter K of asymptotic form (16)–(18). We choose a down-
stream shock position xsd and insert a hydrodynamic shock there
to match inner void solution with outer asymptotic envelope
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solution (32) of finite velocity and density at large x. Note that with
n < 1 the velocity actually tends to zero at large radii. Several such
global LH2 void solutions with shocks are shown in Fig. 2. We have
also performed numerical explorations with different parameter
sets and the results are qualitatively similar.

With a� ¼ 0 at the void boundary, the density first increases and
then decreases as x increases; and the radial velocity increases as x
increases. The density profiles of LH2 void solutions (see the upper
panel of Fig. 2) indicate a prominent shell-type morphology sur-
rounding a central cavity in expansion. The peak density of the
solution and the width of the shell is modulated primarily by K
parameter, which varies for different astrophysical gas flow sys-
tems. With different values of xsd, different dynamic behaviours
of the corresponding upstream side can be obtained (e.g. the lower
panel of Fig. 2). In the vicinity of the upstream shock front, the fluid
can be either an inflow (solutions 1 and 2) or an outflow (solutions
3 and 4). With adopted parameters, the fluid always merges into an
asymptotic outflow (parameter B > 0) far from the system centre,
whereas it possible to construct solutions with B 6 0 for LH2
voids. Numerical explorations indicate that it is generally not pos-
sible to make LH2 void solutions to cross the sonic critical curve
smoothly. In other words, the inclusion of hydrodynamic shocks
is necessary in order to construct sensible semi-complete global
void solutions.

The possibility of asymptotic inflows at large x associated with
central void solutions deserves special attention. Without shocks,
void solutions generally merge into asymptotic expansion solu-
tions with flow velocities remaining positive. This establishes the
physical links between central expanding voids and asymptotic
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Fig. 2. Global LH2 void solutions with shocks for parameters ðn ¼
0:75; q ¼ �0:5; c ¼ 1:1875;h ¼ 0Þ and the void boundary x� ¼ 1. The upper panel
shows the reduced density aðxÞ and the lower panel shows the reduced radial
velocity vðxÞ. In the upper panel, a logarithmic scale is used for aðxÞ. In both panels,
the dotted curve is the sonic critical curve, and in the lower panel the dashed curve
is the void boundary line nx� v ¼ 0. The void solution with K ¼ 1 connects two
solutions 1 and 2 whose parameters are: A ¼ 7:3025;B ¼ 3:7802; xsd ¼ 3;asd ¼
1:6366; vsd ¼ 1:9702; xsu ¼ 3:6205;asu ¼ 0:2519; vsu ¼ 0:1559 (solution 1), and A ¼
8:7808;B ¼ 6:3723; xsd ¼ 3:2;asd ¼ 1:1040; vsd ¼ 1:9755; xsu ¼ 3:2529;asu ¼ 0:3781;
vsu ¼ 1:1854 (solution 2), respectively. The void solution with K ¼ 5 connects two
solutions 3 and 4 whose parameters are: A ¼ 24:493;B ¼ 4:854;
xsd ¼ 2:27;asd ¼ 2:8499; vsd ¼ 1:4515; xsu ¼ 4:5410;asu ¼ 0:2587; vsu ¼ �2:1237
(solution 3), and A ¼ 7:6878; B ¼ 5:4448; xsd ¼ 2:37;asd ¼ 2:0616; vsd ¼
1:4308; xsu ¼ 2:5603;asu ¼ 0:3928; vsu ¼ � 0:0456 (solution 4), respectively.
outflows. In the presence of shocks, the upstream may have in-
flows, either near the shock front or sufficiently far from the sys-
tem centre. This means that initially and at large radii a cloud
system may involve inflow or contraction under the self-gravity.
When the central engine forms an expanding void, a resulting
shock may face the falling gas and expand outwards. For example,
in Hu and Lou (2008a), the possibility of asymptotic inflows at
large x is interpreted as a special scenario for ‘‘champagne flows”
in H II regions.

We emphasize that LH2 solutions here are the only void solu-
tions in non-magnetized cases with a� ¼ 0. The shell-type appear-
ance is a general feature for LH2 void solutions. Such solutions are
applicable to shell-type morphologies, widely observed in various
astrophysical gas systems, such as supernova remnants and hot
bubbles (e.g. Ferrière, 1998, 2001), H II regions (e.g. Hu and Lou,
2008a) and even cavities in galaxy clusters (e.g. McNamara et al.,
2005). The increasing velocity with radius of such solutions sug-
gests a wind nature: the fast wind from the central cavity deceler-
ates in the shell and the mass is accumulated in the shell. This is
consistent with the picture of champagne flows of H II regions
(e.g. Hu and Lou, 2008a) and supernova remnants.

3.2. MHD cases

With a random magnetic field, both LH1 and LH2 void solutions
exist. As counterparts to hydrodynamic cases, we consider LH2
void solutions with the same parameters adopted in the previous
section, except for the magnetic parameter being h ¼ 0:3. Such glo-
bal MHD LH2 void solutions with shocks are shown in Fig. 3.

The appearance of MHD LH2 void solution does not change very
much with a magnetic parameter h > 0. The density profiles also
75

Fig. 3. Global MHD LH2 void shock solutions with parameters
ðn ¼ 0:75; q ¼ �0:5; c ¼ 1:1875;h ¼ 0:3Þ and a void boundary x� ¼ 1. The same
format is adopted as in Fig. 2. The void solution with K ¼ 1 does not allow a
magnetosonic shock and it merges into the MHD free-expansion solution. The void
solution of K ¼ 5 connects with solutions 1 and 2 whose parameters are
A¼12:325;B¼3:977;xsd ¼4;asd ¼0:4915;vsd ¼2:2888;xsu ¼5:5577;asu ¼0:1273;vsu

¼0:3533 (solution 1), and A¼18:390;B¼8:344;xsd ¼7;asd ¼0:2401;vsd ¼
4:2102;xsu ¼ 8:6661;asu ¼0:0941;vsu ¼3:2135 (solution 2), respectively. The void
solution of K ¼10 connects with solutions 3 and 4 whose parameters are
A¼7:5520;B¼4:010;xsd ¼4;asd ¼0:4478;vsd ¼2:1273;xsu ¼4:2913;asu ¼ 0:1775
vsu ¼0:8558 (solution 3), and A¼15:175;B¼7:706;xsd ¼7;asd ¼ 0:2317;vsd

¼4:1652;xsu ¼8:0096;asu ¼0:0999;vsu ¼3:1276 (solution 4), respectively.
:

:
;
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show shell-type morphology and the velocity still increases with
radius (see Fig. 3). Compared with non-magnetized cases shown
in Fig. 2 with the same void boundary x� and the same parameter
K, the peak density in the shell is lower and the shell width appears
broadened in MHD cases. The K ¼ 1 void solution in the non-mag-
netized case can involve a shock, otherwise it encounters the SCC.
However, with the same value of K in the magnetized case, the void
solution cannot harbor any shocks and merge into the MHD free-
expansion solution definitely. The K ¼ 5 and K ¼ 10 void solutions
in the magnetized case can harbor MHD shocks. The MHD behav-
iour of the corresponding upstream sides, from our numerical
exploration, is all outflow (solutions 1, 2, 3 and 4 of Fig. 3). With
a larger xsd, or a faster shock, the upstream outflow has larger
velocity, both near the shock front and far from the centre. The
shell-type appearance is commonly observed for LH2 void solu-
tions, for hydrodynamic and MHD cases.

We now consider MHD LH1 void solutions, for which the void
boundary nx� v ¼ 0;a ¼ 0 is also a critical curve and the asymp-
totic solution approaching the void boundary is an eigensolution.
The regime of parameter in which the LH1 void solution exists is
q > 0; cþ q P 1; h > 0 (c P 1). Examples of MHD LH1 void solu-
tions are shown in Fig. 4, which do not encounter the critical curve
and approach free-expansion asymptotic solution (37) at large x.
For this reason, the three velocity curves in the bottom panel of
Fig. 4 are nearly identical. The density and velocity increases as x
increases. With a larger parameter q, the density profile appears
more pronounced in the vicinity of void boundary. Because the
free-expansion solution has infinite velocity and constant density
far from the flow centre, the LH1 void solutions would be more
suitable for astrophysical model if they are matched with another
branch of solution with finite velocity and density at large x by
MHD shocks. Examples of shocks are shown in Fig. 4 for q ¼ 0:3
with downstream shock positions xsd ¼ 3; xsd ¼ 5, and xsd ¼ 8,
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Fig. 4. Semi-complete global MHD LH1 void solutions and shocks with the
parameter ðn ¼ 0:75; h ¼ 0:3Þ and the void boundary x� ¼ 1. The same format as
Fig. 2 is adopted. The void solutions merge to the free-expansion solution (37) and
the constant value of a to be a1 ¼ 0:238 (Eq. (40)). The void solution of q ¼ 0:3
connects with three upstream solutions whose parameters are: A ¼
0:0968; B ¼ 1:6372; xsd ¼ 3;asd ¼ 0:0299; vsd ¼ 2:3340; xsu ¼ 3:1374;asu ¼ 0:0120;
vsu ¼ 1:8694; A ¼ 0:9024; B ¼ 2:8925; xsd ¼ 5;asd ¼ 0:0774; vsd ¼ 3:7655; xsu ¼
5:1942;asu ¼ 0:0353; vsu ¼ 3:0033; and A ¼ 5:0384; B ¼ 5:2269; xsd ¼ 8;asd ¼
0:1300; vsd ¼ 5:8366; xsu ¼ 8:2401;asu ¼ 0:0689; vsu ¼ 4:7681, respectively.
respectively. Again with a larger xsd, or a faster shock, the upstream
outflow has a higher speed.

Examples of MHD LH1 void solutions for the relativistic case of
q ¼ 2=3; c ¼ 4=3 are displayed in Fig. 5. We set free parameter
C ¼ 1 and the arbitrary parameter k on the shock to be k ¼ 1. With
Eqs. (12) and (13), we obtain the MCC with a ¼ 0:3897 and
v ¼ 0:0151x. In this case, the suitable expansion solution becomes
the Einstein–de Sitter solution as shown in Fig. 5. Similarly, we are
able to construct MHD shocks to match LH1 void solutions with
another branch of solution (32) with finite velocity and density
far from the flow centre.

In general, the reduced density of MHD LH1 void solutions in-
creases with increasing x, and the density near the upstream side
of shock is very low, as compared with the density near the down-
stream side of shock (see Figs. 4 and 5 for shocks). For the corre-
sponding upstream solutions, the density decreases as x
increases and tends to zero at large x. With MHD shocks, we obtain
again the shell-type morphology for the density. This shell-type
morphology here is somehow different from the shell-type mor-
phology of LH2 void solutions (e.g. Figs. 2 and 3). The LH2 void
solutions have density peaks near the void boundary by them-
selves: the density increases and then decreases with increasing
x. However, the LH1 void solutions must involve MHD shocks to
have shell-type density profiles and the peak density is located
on the downstream side of shock.
4. Hydrodynamic self-similar void solutions with a� 6¼ 0

By setting magnetic parameter h ¼ 0, we readily obtain a group
of self-similar non-linear ODEs describing the hydrodynamics of a
general polytropic gas with specific entropy conserved along
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ig. 5. Semi-complete global MHD LH1 void shock solutions with parameters
¼ 0:75; q ¼ 2=3; c ¼ 4=3; h ¼ 0:3;C ¼ 1 and the void boundary x� ¼ 1 and x� ¼ 4.

he same format as Fig. 2 is adopted. The MCC is a ¼ 0:3897; v ¼ 0:0151x. The inner
oid solution of x� ¼ 1 connects with two upstream solutions whose parameters
re: A ¼ 0:2819; B ¼ �0:3660; xsd ¼ 3;asd ¼ 0:1577; vsd ¼ 2:0388; xsu ¼ 3;asu ¼
:0136; vsu ¼ �0:2542; and A ¼ 2:0920; B ¼ �0:7974; xsd ¼ 6;asd ¼ 0:1666; vsd ¼
:0166; xsu ¼ 6;asu ¼ 0:0163; vsu ¼ �0:4443, respectively. The inner void solution
f x� ¼ 4 connects to one upstream solution whose parameters are:
¼ 2:7441; B ¼ �1:5525; xsd ¼ 8;asd ¼ 0:1404; vsd ¼ 5:5306; xsu ¼ 8;asu ¼ 0:0097;

su ¼ �0:7679.
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Fig. 7. Inflow velocities �vðxÞ of void solutions with n ¼ 0:85
c ¼ 1:2875; q ¼ 0:5; h ¼ 0. The upper dotted curve is the sonic critical curve (SCC)
and the lower dotted curve is the void boundary nx� v ¼ 0. The solid curve 1 is a
void solution with x� ¼ 0:4, crossing the upper SCC smoothly at x ¼ 4, and matching
asymptotic solution (32) with A ¼ 19:852 and B ¼ 1:286. Solid curves 2–4 are
integrated from x� ¼ 1; x� ¼ 2; x� ¼ 3, with K ¼ 0:29, and v0 given by expression
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streamlines. We shall choose a non-zero a� at the void boundary
nx� v ¼ 0, or parameter K, in constructing solutions with a consid-
erable freedom. We also insert hydrodynamic shocks to obtain
semi-complete global solutions satisfying the asymptotic condition
that vðx!1Þ ¼ 0. According to Table 1, asymptotic behaviours
near the void boundary can be generally classified as Type-N
(q ¼ 0; n–1), Type-N2 (q ¼ 0; n ¼ 1) and Type-D (q > 0)
separately.

4.1. Cases of q ¼ 0

With q ¼ 0 and h ¼ 0, the flow system is reduced to a conven-
tional polytropic gas obeying nþ c ¼ 2 and have a constant specific
entropy everywhere at all times. Such hydrodynamic flows are sys-
tematically and carefully analyzed and discussed by Wang and Lou
(2007). Hu and Lou (2008a) constructed void solutions in a conven-
tional polytropic flow to model the so-called ‘champagne flows’ in
H II regions. In Fig. 6, we present examples of void solutions with
hydrodynamic shocks across the sonic singular surface. For the
same void solution, by properly choosing the downstream shock
position xsd, we can obtain various dynamic behaviours on the up-
stream side: outflow (e.g. B > 0 in solution 3 of Fig. 6), inflow (e.g.
B < 0 in solution 1 of Fig. 6) and contraction (e.g. B ¼ 0 in solution
2 of Fig. 6). Basically, upstream dynamic behaviours depend on the
void boundary x�, the density at the void boundary a�, and the
downstream shock position xsd. Extensive numerical explorations
reveal that the isothermal case (Type-N2) is similar to other
q ¼ 0 cases regarding the void solutions. Lou and Zhai (2009a,b)
provide a detailed analysis for isothermal voids.

4.2. Cases of q > 0

For q > 0, asymptotic solution behaviours at the void boundary
are of Type-D. We can construct void solutions with shocks. Exam-
Fig. 6. Void solutions with n ¼ 0:85; c ¼ 1:15, q ¼ 0;h ¼ 0 for a conventional
polytropic gas. The same format as Fig. 2 is adopted. The void solution of
x� ¼ 1;a� ¼ 2 connects with solutions 1, 2 and 3 whose parameters are:
A¼2:2257;B¼�1:8402;xsd ¼2;asd ¼1:4849;vsd ¼1:3202;xsu ¼2:5521;asu ¼0:1870;
vsu ¼�1:6783 (solution 1); A¼2:5682;B¼0;xsd ¼2:314;asd ¼ 1:2452; vsd ¼1:4646;
xsu ¼2:4721;asu ¼0:2797;vsu ¼�0:2876 (solution 2); and A¼ 6:4646;B¼
3:2026;xsd ¼3;asd ¼0:8228;vsd ¼1:7353;xsu ¼3:0056;asu ¼0:5033; vsu ¼1:2203
(solution 3), respectively.
ples of such void shock solutions with different values of q are
shown in Figs 7 and 8.

Dynamic behaviours of void solutions depend on the void
boundary x� and the density parameter K. Without encountering
the sonic critical point, some void solutions (see curves 2–4 in
Fig. 7) merge into one kind of asymptotic expansion solutions
(e.g. asymptotic free-expansion solution, with v � 2x=3 for
q < 2=3, Einstein–de Sitter solution for q ¼ 2=3, or asymptotic
thermal-expansion solution for q > 2=3). As shown by Fig. 7, void
(16). These solutions merge to the free-expansion asymptotic solutions with form
v ¼ 2x=3þ b;a1 ¼ 2=3. The void solution of x� ¼ 1 and K ¼ 0:29 connects with
solutions 5 and 6 whose parameters are: A ¼ 3:241; B ¼ �0:987; xsd ¼ 2
asd ¼ 0:502; vsd ¼ 1:246; xsu ¼ 4:045;asu ¼ 0:114; vsu ¼ �0:607 (solution 5), and
A ¼ 2:173; B ¼ �0:143; xsd ¼ 2:4;asd ¼ 0:435; vsd ¼ 1:479; xsu ¼ 3:425;asu ¼ 0:126;
vsu ¼ 0:136 (solution 6), respectively.

Fig. 8. Void solutions and the Einstein–de Sitter solution with
n ¼ 0:85; c ¼ 4=3; q ¼ 2=3; h ¼ 0 and C ¼ 1. Inflow velocities �vðxÞ are presented
The same format as Fig. 7 is adopted. The critical curve is v ¼ �2:1772x. The solid
curves are integrated from the void boundary at x� ¼ 1; x� ¼ 2; x� ¼ 3, with K ¼ 0:2
and v0 given by expression (16), which match with the Einstein–de Sitter solution a
large x. The void solution with x� ¼ 1;K ¼ 0:2 connects to one upstream solution
whose parameters are: A ¼ 0:188; B ¼ �12:131; xsd ¼ 1:2;asd ¼ 3:453; vsd ¼ 0:874
xsu ¼ 1:2;asu ¼ 0:0524; vsu ¼ �8:566.
,
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solutions with different void boundaries merge into the same
asymptotic free-expansion solution, except for a slightly different
b parameter. Again, we shall connect these solutions with another
asymptotic solution of finite velocity and density at large x by
shocks (see curves 5 and 6 in Fig. 7). By properly choosing the
downstream shock position, we could readily obtain an inflow
(v < 0) or an outflow (v > 0) for the upstream side of a shock.
The radial flow velocity tends to zero at large radii. Some void solu-
tions cross the critical curve smoothly (see curve 1 in Fig. 7).

As shown in Fig. 8 of a relativistically hot gas, the critical curve
can be obtained analytically from Eqs. (12) and (13) with
a ¼ 3:2843 and v ¼ �2:1772x. Void solutions merge into the Ein-
stein–de Sitter solution as expected. The Einstein–de Sitter solu-
tion has a diverging velocity at large x. Again, this solution can
be connected with an asymptotic solution (32) of finite velocity
and density at large x via shocks.
5. MHD self-similar void solutions with a� 6¼ 0

The magnetic force may play a key role in the vicinity of void
boundary and smooths out all divergence of the non-magnetized
cases. In a MHD flow (q P 0), a� ¼ 0 at the void boundary is al-
lowed for non-trivial void solutions with h > 0, e.g. MHD LH1 void
solution. In this section, we compare a� ¼ 0 and a� > 0 cases, and
see if the boundary value of a� modifies characteristic behaviours
of void solutions.

5.1. Case of q ¼ 0 for a conventional polytropic gas

Examples of global MHD void solutions for the case of q ¼ 0 are
shown in Fig. 9. Numerical computations show that along the MCC,
velocity gradient v0 has one positive and another negative eigen-
values, corresponding to the MCC being saddle points (e.g. Jordan
and Smith, 1977). Solutions approaching this MCC, may either
cross the critical curve smoothly and match with asymptotic solu-
tion (32) of finite velocity and density at large x (see solution curve
Fig. 9. MHD void solutions with n ¼ 0:85; c ¼ 1:15; q ¼ 0 and h ¼ 0:3. Inflow
velocities �v are plotted. The same format as Fig. 7 is adopted. Solid curve 1 is a
void solution with x� ¼ 1 and a� ¼ 5, crossing the MCC smoothly at x ¼ 4 to match
with asymptotic solution (32) with A ¼ 32 and B ¼ 5:413 at large x. Solid curves 2–4
are integrated from the void boundary at x� ¼ 1; x� ¼ 2; x� ¼ 3 respectively all with
a� ¼ 2 and v0 given by expression (25). These solutions are limited by the upper
MCC and merge into the Einstein–de Sitter solutions ðv ¼ 2x=3;a ¼ constÞ. The void
solution of x� ¼ 1 and a� ¼ 2 connects with solutions 5 and 6 whose parameters
are: A ¼ 0:205; B ¼ 4:280; xsd ¼ 3;asd ¼ 0:556; vsd ¼ 1:714; xsu ¼ 3:159;asu ¼ 0:191;
vsu ¼ 0:123 (solution 5), and A ¼ 0:169;B ¼ 1:128; xsd ¼ 2:2;asd ¼ 0:868; vsd ¼
1:356; xsu ¼ 3:306;asu ¼ 0:126; vsu ¼ �2:492 (solution 6), respectively.
1 in Fig. 9), or be turned back smoothly to match with another
branch of solutions and merge into the Einstein–de Sitter solution
at large x (see solution curves 2–4 in Fig. 9). By adjusting the a� va-
lue at the void boundary, we can make the solution crossing the
MCC smoothly. The only difference to integrate curves 1 and 2 in
Fig. 9 is the a� value. Compared with the case without magnetic
field (see Fig. 6), a void solution in this case can merge into the Ein-
stein–de Sitter solution at large x without encountering the MCC.
Void solutions can be connected with outer branch of the asymp-
totic solutions of finite velocity and density by MHD shocks (see
solution curves 5 and 6 in Fig. 9). Similarly by adjusting the down-
stream shock position xsd, one void solution on the downstream
side can be connected to various upstream solutions with different
behaviours at large x.
5.2. Case of q > 0

An example of q ¼ 0:5 is shown in Fig. 10, which can be com-
pared with Fig. 7. The case of q ¼ 2=3 describes a relativistically
hot gas. MHD void solutions in such case is shown in Fig. 11 for
a comparison with Fig. 8.

Again the density at the void boundary a� can be set to either
zero, which leads to the LH1 void solution with eigensolution
(15) (see curves 2–4 of Fig. 10, and curve 1 of Fig. 11), or a non-zero
finite value, which leads to a Type-Nq behaviour of Eqs. (27)–(30)
(see curves 20;30 and 40 of Fig. 10, and curves 2 and 20 of Fig. 11). In
the absence of a magnetic force, only the Type-D behaviour is al-
lowed in this range of q and the density diverges on the void
boundary. If not encountering the MCC, these solutions merge into
one kind of expansion solutions at large x (i.e. free-expansion for
q < 2=3, Einstein–de Sitter solution for q ¼ 2=3, and thermal-
expansion for q > 2=3). This property is the same as hydrodynamic
Fig. 10. MHD void solutions with n ¼ 0:85; c ¼ 1:2875; q ¼ 0:5, h ¼ 0:3. Inflow
velocities �vðxÞ are plotted. The same format as Fig. 7 is adopted. The solid curve 1
is a void solution with the void boundary at x� ¼ 0:3, crossing the MCC smoothly at
x ¼ 5 to match with asymptotic solution (32) with A ¼ 25:977 and B ¼ 1:147. The
solid curves 2–4 are MHD LH1 void solutions, numerically integrated from the void
boundary at x� ¼ 1; x� ¼ 2; x� ¼ 3 with a� ¼ 0. Respectively, the dashed curves 20 ,
30;40 are Type-Nq void solutions, integrated from the void boundary at
x� ¼ 1; x� ¼ 2; x� ¼ 3 with a� ¼ 2. These solutions merge into the free-expansion
asymptotic solutions in the form of v ¼ 2x=3þ b at large x with a1 ¼ 0:238. The
void solution 2 of x� ¼ 1;a� ¼ 0 connects with solutions 5 and 6 whose parameters
are: A ¼ 0:256; B ¼ 1:692; xsd ¼ 2;asd ¼ 0:0646; vsd ¼ 1:475; xsu ¼ 3:662;asu ¼
0:0182; vsu ¼ 1:648 (solution 5), and A ¼ 0:805;B ¼ 2:119; xsd ¼ 3;asd ¼
0:0943; vsd ¼ 2:142; xsu ¼ 4:731;asu ¼ 0:0299; vsu ¼ 1:991 (solution 6), respectively.
The void solution 2’ of x� ¼ 1 and a� ¼ 2 connects with solution 7 whose parameters
are: A ¼ 2:610; B ¼ 0:208; xsd ¼ 3;asd ¼ 0:292; vsd ¼ 1:772; xsu ¼ 4:142;asu ¼ 0:102;
vsu ¼ 0:445.



Fig. 11. MHD void solutions with n ¼ 0:85; c ¼ 4=3; q ¼ 2=3;h ¼ 0:3 and C ¼ 1. �v
is plotted. The upper dotted curve is the MCC satisfying v ¼ �2:2087x and the lower
dotted curve is the void boundary nx� v ¼ 0. The solid curves 1 is LH1 void
solution, integrated from the void boundary at x� ¼ 1 with a ¼ 0. The solid curves 2
and 20 are Type-Nq void solutions, integrated from the void boundary at x� ¼ 1 with
a� ¼ 2 and a� ¼ 10. These solutions merge into the Einstein–de Sitter solution at
large radii. The void solution 1 of x� ¼ 1;a� ¼ 0 connects with solutions 3 and 4
whose parameters are: A ¼ 0:379; B ¼ 1:255; xsd ¼ 3;asd ¼ 0:114; vsd ¼ 2:095; xsu ¼
3;asu ¼ 0:0413; vsu ¼ 1:292 (solution 3); and A ¼ 0:848; B ¼ 1:680; xsd ¼
4;asd ¼ 0:123; vsd ¼ 2:750; xsu ¼ 4;asu ¼ 0:0459; vsu ¼ 1:661 (solution 4), respec-
tively. The void solution 2’ of x� ¼ 1 and a� ¼ 10 connects with solutions 5 whose
parameters are: A ¼ 2:699; B ¼ �4:921; xsd ¼ 3;asd ¼ 0:864; vsd ¼ 1:544; xsu ¼ 3;
asu ¼ 0:149; vsu ¼ �3:298.

Fig. 12. Influence of the initial value of a� on the void solution. The five flow
solution curves are integrated with n ¼ 0:85; c ¼ 1:7; q ¼ 2; h ¼ 0:3, from the void
boundary at x� ¼ 1, and different initial values of a� ¼ 0:5;0:4;0:3; 0:2; 0:1 are
chosen. The vðxÞ part of these five solutions are nearly identical (not shown here).
From this figure, for x > 2:5, the five curves merge together, therefore the influence
of the initial value of a� is only significant around 1 < x < 2:5.
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cases, and we note that the constant density a1 of the free-expan-
sion solution does depend on the magnetic parameter h. This sug-
gests that for such void solutions, the magnetic force plays an
important role. Similar to non-magnetized cases, we can avoid
the velocity divergence of the expansion solutions by matching
such solutions with asymptotic solutions of finite velocity and den-
sity at large x via MHD shocks (e.g. curves 5–7 of Fig. 10, and curves
3–5 of Fig. 11), or making the void solutions crossing the MCC
smoothly (see curve 1 of Fig. 10 and compare it with curve 1 of
Fig. 7). From Figs. 10 and 11, the LH1 void solutions and the
Type-Nq behaviour appear quite similar in terms of velocity pro-
files, except near the void boundary and different b parameter in
the corresponding expansion solutions. We will discuss the influ-
ence of the initial mass density a� presently.

The MCC has the form a ¼ 3:0088; v ¼ �2:2087x for the case of
C ¼ 1; c ¼ 4=3;n ¼ 0:85; q ¼ 2=3 and h ¼ 0:3. The behaviour of
MHD void solutions is similar to the hydrodynamic case. In such
cases, it is unlikely for void solutions to encounter the MCC and
the only way they cross this singular surface is via MHD shocks
(see curves 3–5 in Fig. 11).

We further investigate the influence of a� value at the void
boundary on semi-complete global solutions. By comparing solu-
tions from the same void boundary x� and different a� values
(see curves 1;2;20 in Fig. 11), it appears that with larger a� on
the void boundary, the void solutions converge to the asymptotic
solution more slowly. This means that with larger density gradient
on the void boundary, the system has a larger transition zone
where the magnetic force, the gravity and the thermal pressure
force are all comparable. We refer to this zone as the void bound-
ary layer. Outside the void boundary layer, the free-expansion,
thermal-expansion or the Einstein–de Sitter solution would be a
good approximation for the asymptotic behaviour. With an MHD
shock inserted, the solution can be matched with an outflow
(curves 3 and 4 in Fig. 11) or an inflow (curve 5 in Fig. 11). The dy-
namic behaviour of the outer upstream flow of the global void
solution depends on the void boundary x�, the value of a� and
the downstream shock point xsd. From the same void boundary
x�, we can adjust a� values to let the solution either cross the
MCC smoothly or merge into asymptotic expansion solutions (see
curves 1 and 2 in Fig. 9).

As a further discussion, we obtain void solutions with different
a� values at the void boundary with parameters
ðn ¼ 0:85; c ¼ 1:7; q ¼ 2;h ¼ 0:3Þ (see Fig. 12). In such cases, there
is no MCC. The solution curves are very similar and merge quickly
as a single curve (i.e. asymptotic thermal-expansion solution). This
suggests that the general behaviour of the void solution is not
influenced by the initial a� value. In other words, a� at the void
boundary is fairly arbitrary and only influences the dynamical
behaviour near the void boundary (e.g. void boundary layer). For
a realistic astrophysical flow, the dynamics on the void boundary
cannot be described in a self-similar manner, due to unavoidable
diffusion processes. Therefore, choices of a� at the void boundary
in our model serve only for starting a numerical integration. A
more complete understanding of such system requires information
for the relations between the a� value on the void boundary and
the initial physical conditions that generate voids, such as density
perturbations and growths in supernova explosions (e.g. Cao and
Lou, 2009) or hot fast winds in planetary nebulae (e.g. Lou and
Zhai, 2009a,b).

6. Astrophysical applications

Our self-similar solutions can be adapted to different astrophys-
ical flow systems with various spatial and temporal scales. The
sound parameter k determines the dimensional quantities in phys-
ical space and k varies for different astrophysical flow systems.
From self-similar transformation (6), we have a relation

k1�3q=2 ¼ p

ð4pGÞc�1Gqð3n� 2ÞqqcMq

¼ kBT

lð4pGÞc�1Gqð3n� 2Þqqc�1Mq
; ð43Þ

where T is the thermal temperature, kB is Boltzmann’s constant, l is
the mean molecular (atomic) mass of gas particles and the second
equality only holds for an ideal gas. Since the entropy is closely
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related to pq�c, the increase of entropy across a shock front from the
upstream side to the downstream side would lead an increase of k
value in the same direction for q < 2=3. For c > 1 and q < 2=3, the
temperature should also increase across a shock front in the same
direction. It is still not trivial to estimate k values from relation
(43) above, because the enclosed mass M varies in r. Numerical tests
show that when q is not too large, setting q ¼ 0 does not influence
the magnitude order of k value. Thus we use a simplified relation

k ¼ p

qcð4pGÞc�1 ¼
kBT

lqc�1ð4pGÞc�1 : ð44Þ

This is identical with relation (59) of Lou and Wang (2006) for a
conventional polytropic gas. The relation does depend on the value
of c. For a late evolution phase of massive stars after the hydrogen
burning, the central density and temperature are qc � 108 g cm�3

and Tc � 109 K. We estimate k � 1016—1017 cgs unit, depending on
the value of c. For the interstellar medium (ISM) in our own Galaxy,
mainly composed of hydrogen, qISM � 10�20—10�26 g cm�3 and
T ISM � 10—106 K (e.g. Ferrière, 2001) and we estimate
k � 109—1024 cgs unit, depending on the value of c in the range of
1 K c K 4=3.

The parameters we have adopted in our model are ðn; c; q;hÞ
with the relation c ¼ 2� nþ ð3n� 2Þq=2. The physical meaning
of these parameters is clear. Parameters ðn; c; qÞ are relevant for
general polytropic processes. By setting q ¼ 0, we retrieve the con-
ventional polytropic gas with a constant specific entropy every-
where at all times and require nþ c ¼ 2. The polytropic index c
is an approximation commonly invoked when energetic processes
are not known (e.g. Weber and Davis, 1967). For example, when
applying our model to an exploding stellar envelope, such as
supernovae, c would be close to unity, indicating a tremendous en-
ergy deposit. To apply our model to a slowly-evolving ISM, c
should be very close to ratio of specific heats cp=cv for an adiabatic
process. This is consistent with the dynamic evolution shown by
our self-similar solutions. For a fixed x value, the corresponding ra-
dius r expands with time obeying a power-law of � tn. For n > 1; r
expands faster and faster, implying a continuous energy input into
a gas flow. Another role of n is that it scales the initial density dis-
tribution of a gas flow. According to asymptotic solution (32), the
mass density scales as x�2=n at large x. The initial condition with
t ! 0þ corresponds to the asymptotic boundary condition with
x!1, so the scaling parameter n determines the initial density
profile when the solution takes asymptotic form (32) at large x.

Our general shock void solutions may be adapted to model
planetary nebulae. In the late stages of stellar evolution, the com-
pact star becomes an intense source of hot fast stellar wind and
photoionization. The fast wind catches up with the fully photoion-
ized slow wind and supports a fast wind bubble of hot gas. Cheva-
lier (1997) developed an isothermal self-similar model without
self-gravity to study the expansion of a photoionized stellar wind
around a planetary nebula (see also Meyer, 1997). The key idea
of Chevalier (1997) is that the inner edge of the slow wind forms
a contact discontinuity with the stationary driving fast wind. We
have shown that this contact discontinuity in gravity-free cases
corresponds to the void boundary in our formulation. Lou and Zhai
(2009a,b) presented an isothermal model planetary nebula involv-
ing an inner fast wind with a reverse shock; this shocked wind is
connected to an expanding self-similar void solution through an
outgoing contact discontinuity. In their model, the self-gravity is
included and a variety of flow profiles are possible. We here pro-
vide a theoretical model formulation in a more general framework
with a polytropic equation of state and the inclusion of self-gravity
and the magnetic force. Our MHD shocked void solutions are also
suitable to describe the self-similar dynamics of planetary nebulae
combined with effects of central stellar winds and photoionization.
Another astrophysical context to apply our MHD void shock
solutions is the expansion of H II regions surrounding new-born
protostars, especially for ‘‘champagne flows” (e.g. Hu and Lou,
2008a). Ultraviolet photons from nascent nuclear-burning proto-
stars fully ionize and heat the surrounding gas medium and drive
H II regions out of equilibrium. Such H II regions expand and grad-
ually evolve to a ‘‘champagne flow” phase with outgoing shocks.

As a more detailed application of our void solutions, we revisit
below the scenario for core-collapse supernovae, which has been
investigated numerically over years (e.g. see Liebendörfer et al.,
2005 for an overview). Neutrino-driven models are widely adopted
for explaining the physical mechanism of type-II supernovae. The
core collapse and bounce create a tremendous neutrino flux and
within several hundred milliseconds after the core bounce, neu-
trino sphere is largely trapped and deposit energy and momentum
in the dense baryonic matter. A typical scenario is that the neutri-
nos drive the stellar materials outwards, deposit large amount of
outward momentum and re-generate the delayed rebound shock
to push outwards. Janka and Müller (1995, 1996) successfully ob-
tained numerical simulation for the first second of type-II superno-
vae based on such a scenario. Many recent numerical studies, with
more careful consideration of the convection in the stellar enve-
lope and diffusion processes, also confirm and consolidate the via-
bility of such a neutrino reheating process (e.g. Buras et al., 2006;
Janka et al., 2007, 2008). From simulations of Janka and Müller
(1995, 1996) on progenitor stars with a mass range of
� 8—15 M
, the neutrino sphere stops depositing energy �0.5 s
after the core bounce and then decouples from the baryonic mat-
ter. Once decoupled, neutrinos quickly escape from the stellar inte-
rior and may leave a cavity between the centre and the envelope
within the exploding progenitor star. At the centre of the cavity
may lay a nascent neutron star, a stellar mass black hole, or even
shredded debris (e.g. Cao and Lou, 2009).

We now show that the gravity of a remnant central object (if
not completely destroyed by the rebound process) on the expand-
ing stellar envelope may be neglected under certain situations. The
equivalent Bondi–Parker radius rBP is

rBP ¼
GM�

2a2 ; ð45Þ

where M� is the mass of the central object and a is the sound speed
of the surrounding medium, which mainly depends on temperature.
Far beyond rBP, the gravity of a central mass may be ignored. In the
following, we will see that at �1 s after the core bounce, the stellar
envelope has a temperature of the order of � 108 K (see Fig. 14) and
a corresponding sound speed squared a2 � 1017 cm2 s�2. With
M� � M
, the Bondi–Parker radius at 1 s is estimated to be of the or-
der of � 108 cm which is roughly the same as the void boundary.
Therefore, at the beginning, the gravity of the central object is only
marginally ignorable. From self-similar transformation (6), the Bon-
di–Parker radius, which is proportional to 1=a2 / q=p, has the time
dependence of t2�2n. The void boundary expands as tn. As long as we
require n > 2=3, the Bondi–Parker radius expands slower than the
void boundary; in other words, the gravity of the central object
may be ignored shortly after the core bounce. We can then presume
that the central cavity is an approximate void and apply our self-
similar void solutions. Similar approximation has been applied to
other astrophysical flow systems, in which the gravity of central ob-
ject can be neglected with respect to the dynamics of the surround-
ing gas (e.g. see Tsai and Hsu, 1995; Shu et al., 2002; Bian and Lou,
2005; Hu and Lou, 2008a for applications to shocked ‘‘champagne
flows” in H II regions).

The model framework of self-similar dynamics described in
this paper implies that the radius of a spherical shock rs evolves
with time t in a power-law manner, i.e. rs ¼ k1=2xstn. We may re-
gard k1=2xs and n as two free parameters and attempt to fit the
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self-similar evolution to the results of a numerical simulation by
Janka and Müller (1996; e.g. their case O3c with relevant param-
eters specified in the caption of our Fig. 13).; We use
k ¼ 4� 1016 cgs unit for the inner part of the void solution (i.e.
the downstream side of an outgoing shock). The best fit model
is achieved at n ¼ 1:57 and the downstream shock position (or
speed) of xs ¼ 7:36 (see Fig. 13). The self-similar evolution fits al-
most perfectly with the simulation. It is striking to obtain such a
good agreement for shock evolution, because the numerical simu-
lation of Janka and Müller (1996) employed an equation of state
that contains contributions from neutrinos, free nucleons, a-parti-
cles and a representative heavy nucleus in nuclear statistical equi-
librium. In other words, their model carries distinct features. With
our simple approximation, we essentially parameterized all these
complicated energetic processes by a general polytropic equation
of state. We expect to obtain different best-fit scaling parameter n,
in comparison with numerical results under different conditions,
such as higher or lower initial neutrino luminosity. This fitting
is suggestive that the polytropic approach is a fairly good approx-
imation for shock evolution, and physically the rebound shock ex-
pands in a self-similar manner.

The numerical simulation of Janka and Müller (1996) ends at
�1 s. Within this duration, neutrinos deposit enough momentum
and kinetic energy in a shocked stellar envelope and the star is
set to explode as the rebound shock emerges from the stellar pho-
tosphere. The subsequent dynamic evolution, including the travel
of the rebound shock, can be readily described by our self-similar
model. Soon after neutrinos decouple from the baryon matter, no
more energy is provided and indeed the system begins to lose en-
ergy by radiation processes. Thus, we can no longer apply n ¼ 1:57
further. We therefore use their model parameters at �1 s as the
initial input parameters of subsequent dynamic evolution. We
found that if n ¼ 0:8; c ¼ 1:2; q ¼ 0 (i.e. a conventional polytropic
gas), our self-similar model gives appropriate solutions and we
do not include a random magnetic field in this preliminary illustra-
tion. The void solutions with these parameter are of Type-N and
relevant examples are also shown in Fig. 6. The cavity radius is ta-
ken to be �1000 km at t ¼ 1 s and the corresponding void bound-
ary is then x� ¼ 0:5. From the simulation case O3c of Janka and
Müller (1996), the rebound shock is at � 1:3� 109 cm at t ¼ 1 s,
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Fig. 13. Shock positions as function of time after a core bounce. The solid curve
shows the self-similar evolution, with parameters n ¼ 1:57; k ¼ 4� 1016 cgs unit
and the downstream shock position xs ¼ 7:36. The asterisks show the result of
numerical simulation by Janka and Müller (1996) for a one-dimensional model of
the core collapse of a progenitor with mass 15 M
 and the iron core mass 1:31 M
 ,
and the initial neutrino luminosity 2.225 �1052 erg s�1.
which correspond to a downstream shock position xsd ¼ 6:5. We
note that for these parameters the mass density cannot be set to
zero at the void boundary, hence we should choose a� properly
such that the mass density on the void boundary at t ¼ 1 s is equal
to the mass density given by the case O3c. The void solution at
t ¼ 1 s is shown in Fig. 14.

The solution shown in Fig. 14 corresponds well to the envelope
of an exploding massive star. The enclosed mass is � 25 M
 with a
radius of � 1012 cm, grossly consistent with typical masses and ra-
dii of O and B stars. The enclosed mass mainly depends on the den-
sity a� on the void boundary; by regarding a� as a free parameter,
the self-similar dynamics is capable of modelling stars with differ-
ent masses. The solution shows an expansion velocity
� 109 cm s�1, a typical expansion velocity for type-II supernovae.
The temperature increases from the void boundary to the rebound
shock and decreases with r outside the rebound shock. The temper-
ature rises to � 108 K, grossly consistent with typical supernova
temperature. Furthermore, we can compute the total energy of
the entire system. We should consider the kinetic energy Ek, grav-
itational energy Eg and the internal energy Ei. When calculating the
internal energy, we assume that the gas is single-atomic, whose
degree of freedom is 3. At t ¼ 1 s, the total energy Etotal is
6:54� 1050 erg, in which the kinetic energy Ek ¼ 1:63� 1051 erg,
the gravitational energy Eg ¼ �1:10� 1051 erg, and the internal en-
ergy Ei ¼ 1:21� 1050 erg. We see that the kinetic energy is the ma-
jor energy source, and the radial motion of the fluid has not been
dissipated much to random motions, in agreement with the
exploding star scenario. The total energy of our self-similar model
is well consistent with the total energy 9:5� 1050 erg given by the
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Fig. 14. Self-similar void solution for an exploding progenitor star at t ¼ 1 s. From
top to bottom, the panels show the density, radial flow velocity, thermal pressure,
enclosed mass and the thermal temperature. The solution is obtained with
parameters n ¼ 0:8; c ¼ 1:2; q ¼ 0; h ¼ 0; k ¼ 4� 1016 cgs unit, void boundary
x� ¼ 0:5, density at the void boundary a� ¼ 0:001 and the downstream shock
position xsd ¼ 6:5. Correspondingly at the moment shown, the void boundary is at
108 cm and the rebound shock is at 1:3� 109 cm. Our solution is numerically
integrated until 1012 cm.
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Case O3c of simulation (Janka and Müller, 1996) which suggests
that the energy of the stellar envelope of the self-similar model
comes from the neutrino process before 1 s. Our calculations reveal
that the energy does not vary much with time, consistent with our
assumption that the system is nearly adiabatic. We conclude that
in general, our self-similar void solution is plausible as it shows
typical value of velocity, pressure, temperature, enclosed mass
and total energy. We can also adjust the self-similar parameters
to produce solutions for different objects.

Here we discuss two immediate utilizations of our self-similar
solutions. First, as long as we know the evolution of a rebound
shock, we can estimate the time when the shock breaks out of
the stellar envelope. Assuming the stellar photosphere at a radius
of � 1012 cm, with the relation rshock / tn, we estimate that the
shock travels to the photosphere at � 4� 103 s (i.e. J 1 h) after
the core rebounce. From then on, we should be able to detect the
massive star in act of an explosion. With advanced instrument,
astronomers are now detecting more and more shock breakout
events, and consolidate the association of long c-ray bursts (GRBs)
and supernovae (e.g. Campana et al., 2006). From Fig. 14, the tem-
perature around a shock in the stellar envelope is in the range of
� 108 K and gradually decreases to the order of � 107 K as the
shock breaks out of the stellar atmosphere. Such a temperature
range will give rise to X-ray radiations. With our dynamical re-
bound shock model, coupled with radiation (e.g. the thermal
bremsstrahlung) and transfer processes, we can calculate early X-
ray emissions from supernovae in act of an explosion (Lou and
Zhai, 2009a,b), and in turn, we may infer properties of GRB/SN pro-
genitor by observations of shock breakout diagnostics. Hu and Lou
(2008b) presented some preliminary model calculations along this
line and found sensible agreement with X-ray observations of SN
2008D (e.g. Soderberg et al., 2008; Mazzali et al., 2008).

Secondly, after long temporal lapses, we intend to relate the
central cavity of the stellar envelope with hot bubbles observed
in our own Galaxy. A typical SNR grows for � 1:5 Myr and reaches
a radius of � 50 pc (e.g. Ferrière, 2001). We assume that the cavity
and the stellar envelope (gradually evolving into a SNR) expand in
a self-similar manner as the solution shown in Fig. 14 after a SN
breakout event. The cavity radius expands as tn, and 1.5 Myr later,
the radius of the cavity becomes � 3 pc. Possible explanations for
the discrepancy are: first, in the ISM the sound scaling factor k is
much larger than that in the stellar envelope; therefore we can
no longer assume k to be an overall constant. Secondly, the typical
scale of a SNR includes both the cavity radius and the radius of the
matter shell in the surrounding; and the gas shell can well spread
out to the ISM since the pressure in the ISM is very low.

As the last part of our discussion, we emphasize the shell-type
solutions such as LH1 void solutions and LH2 void solutions, and
corresponding examples are shown in Figs. 2–5. These void solu-
tions have zero density at the void boundary and thus a sensible
continuity across the void boundary. It is essential to consider
the magnetic field for the LH1 void solutions, as our study shows
that the magnetic field is indispensable to obtain shell-type LH1
solutions. As the shell-type SNRs are commonly observed, and
the magnetic field generally exists in SNRs, our self-similar void
solutions are likely to be a sensible dynamic approximation. In
cases with q > 2=3, LH1 shell-type solutions merge into the
asymptotic thermal-expansion solution at large x with a divergent
velocity. These solutions do not encounter the MCC, indicating that
the fluid keeps sub-magnetosonic for the entire flow system and
such shell-type solutions cannot be matched with another asymp-
totic solutions of finite velocity and density at large x by an MHD
shock. In reality, the outer layer of shell-type SNRs is bounded by
the ISM.

We define a shell width as the distance from the void boundary
to the place where the density is e�1 of the peak density and per-
form numerical exploration to examine how the shell width de-
pends on magnetic field strength h and the self-similar
parameter q. One example of LH2 solutions with n ¼ 0:75;
x� ¼ 1 and K ¼ 1 is shown in Fig. 15. For certain q, the shell width
has a maximum value with h K 1. The shell width increases with
h rapidly in the regime h� 1 and decreases with h gradually in the
regime of h > 1. For a larger q value, the maximum shell width is
larger, and the shell width at large h is smaller. In general, we find
that the magnetic field and the entropy distribution (or parameter
q) influence the shell-type morphology significantly. This implies
that shell structures in supernova remnants may reveal some
information on the magnetism of interstellar media or the internal
energy input or output of the gas.
7. Summary and conclusions

In a general polytropic MHD formulation, we obtain novel self-
similar void solutions for a magnetofluid under self-gravity and
with quasi-spherical symmetry. For our MHD void solutions, the
enclosed mass within the void boundary is zero and our solutions
are valid from the void boundary outwards. We have carefully
examined MHD and hydrodynamic behaviours near the void
boundary and obtained complete asymptotic solutions in various
parameter regimes. For clarity, we consider the situation of den-
sity being zero at the void boundary and other situations
separately.

For the case of a� ¼ 0 at the void boundary, we derive novel LH1
solutions with q > 0, for which the void boundary is also a critical
curve, and LH2 solutions with q < 0, for which the thermal pres-
sure force becomes dominant approaching the void boundary. A
random magnetic field must be present in order to construct LH1
solutions. Both LH1 and LH2 solutions have shell-type morphology
in the density profile, whose peak density and the shell width are
mainly determined by the values of the magnetic parameter h and
the parameter q. The shell width of the density profile expands
with time also in a self-similar manner.

For the case of a� – 0 at the void boundary, the situation is quite
different between the hydrodynamic and MHD cases. In hydrody-
namic cases, asymptotic behaviours in the vicinity of void bound-
ary depends on parameter q and can be classified as Type-N (q ¼ 0)
and Type-D (q > 0). For the Type-D behaviour, the density at the
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void boundary diverges, and local diffusion process should occur.
We systematically examined all these possibilities and present a
few numerical solution examples. Our solutions are well compati-
ble with previous self-similar solutions; for example, by setting
q ¼ 0, our formulation reduces to self-similar solutions for a con-
ventional polytropic gas (Lou and Wang, 2007). Without magnetic
field, for both Type-N and Type-D behaviours, the thermal pressure
force dominates at the void boundary; actually Type-N solutions
can be regarded as a natural extension of LH2 solutions in the re-
gime of q ¼ 0, and Type-D solutions as a natural extension of
LH2 solutions in the regime of q > 0. Therefore, for all sensible void
solutions in hydrodynamic framework, the thermal pressure is the
dominant force at the void boundary. By including a random mag-
netic field, which is ubiquitous in astrophysical plasmas, the diver-
gence at the void boundary appearing in the Type-D behaviour can
be removed, and the dominant force on the void boundary be-
comes the magnetic force.

Void solutions may go across the critical curve either smoothly
or by an MHD shock and then merge into asymptotic solution (32)
of finite density and velocity at large x. If void solutions do not
encounter the critical curve, they generally merge into one kind
of asymptotic expansion solutions at large x with the velocity pro-
portional to the radius. For q < 2=3, void solutions merge into
asymptotic free-expansion solutions, for which the thermal pres-
sure force is negligible. For q > 2=3, void solutions merge into
asymptotic thermal-expansion solutions, for which the thermal
pressure force is dominant. For q ¼ 2=3, void solutions merge into
the Einstein–de Sitter solution, a semi-complete global exact solu-
tion. We are free to choose the position of void boundary x�, the
density on the void boundary a� (or the density parameter K)
and the downstream shock position xsd to construct various void
solutions with different asymptotic dynamic behaviours far from
the void centre, including inflows, outflows, contraction and breeze
for upstream solutions.

In this paper, we briefly discussed the case of q ¼ 2=3 and thus
c ¼ 4=3 for a relativistically hot gas (Goldreich and Weber, 1980;
Lou and Cao, 2008; Cao and Lou, 2009). One more parameter ap-
pears in the self-similar form of the equation of state denoted as
C in this case. We show solution examples of C ¼ 1. A more de-
tailed study, including cases of C–1 is forthcoming.

Finally, we provide examples of applications of our self-simi-
lar MHD void solutions. In principle, our solutions can be
adapted to various astrophysical plasmas with a central cavity.
The scale of a system can vary within the upper limit of neglect-
ing the universe expansion. The input and output of energy can
be approximated by properly choosing parameters ðn; c; kÞ. As
more self-consistent solutions of an MHD problem usually re-
quire tremendous computational effort, our self-similar approach
is valuable in conceptual modelling and in checking simulation
results. We provide an application of our void solutions to the
neutrino reheating mechanism for core-collapse supernovae and
compare the dynamical results of self-similar solutions with pre-
vious numerical simulations. We find that our simplified model
fits well with numerical simulations, suggesting that the self-
similar approach is plausible and the exploding stellar envelope
and the rebound shock do evolve in a self-similar manner. More
specifically, we estimate that a rebound shock breaks out from
the stellar photosphere � 4000 s after the core bounce, for a pro-
genitor star of mass 25 M
 and radius � 1012 cm. We expect that,
our general polytropic self-similar MHD solutions, coupled with
radiative transfer processes, may offer physical insight for the re-
bound shock evolution of massive stars as well as on GRB-super-
nova associations. We also indicate potential applications of LH1
and LH2 void solutions, with shell-type morphology, on the
shell-type supernova remnants as well as hot bubbles in the
interstellar medium.
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Appendix A. MHD shock jump conditions

MHD shocks can be constructed for self-similar solutions to
cross the MSS. Despite discontinuities in pressure, mass density,
temperature, magnetic field and velocity across the shock front,
we require conservations of mass, radial momentum, MHD energy
across a shock front in the comoving shock reference framework,
respectively. They are

½qðus � uÞ�21 ¼ 0; ð46Þ

pþ qðus � uÞ2 þ hB
2
t i

8p

" #2

1

¼ 0; ð47Þ

qðus � uÞ3

2
þ cpðus � uÞ
ðc� 1Þ þ

hB2
t i

4p
ðus � uÞ

" #2

1

¼ 0; ð48Þ

where us is the shock travel speed in the laboratory framework of
reference. Since we only consider the dominant transverse mag-
netic field parallel to the shock front in our theoretical model
framework, the magnetic induction equation can be written as

ðus � uÞ2hB2
t i

h i2

1
¼ 0: ð49Þ

The magnetic field average is made over a layer between r and
r þ dr, and such average can still describe the discontinuity in the
radial direction. Strictly speaking, the magnetic fields have weak
radial components normal to the shock front. We presume that such
radial components are extremely weak compared to the transverse
components on large scales. In common with the conventional
shock analysis (e.g. Zel’dovich and Raizer, 1966, 1967), we use a pair
of square brackets outside each expression enclosed to denote the
difference between the upstream (subscript ‘1’) and downstream
(superscript ‘2’) sides across a MHD shock front. Note that the
definitions of the downstream and upstream sides are in the refer-
ence framework where the shock front is at rest, and the specific
entropy increases from the upstream side to the downstream
side. The sound parameter k in transformation (6) is related to the
polytropic sound speed and changes across a shock. We therefore
relate upstream k1 and downstream k2 with a ratio factor k such
that

k2 ¼ k2k1; h1 ¼ h2; x1 ¼ kx2: ð50Þ

The latter two in condition (50) are for the jump of the magnetic en-
ergy density hB2

t i and the continuity of shock radius rs across the
MHD shock front, which means while the dimensionless shock front
xs has different values across the shock, they correspond to the
same shock front radius rs. With the definition of h;h1 ¼ h2 actually
means the transverse magnetic field is proportional to the mass
density across the shock front, consistent with Dyson and Williams
(1997). Using h instead of h1 and h2 for the magnetic parameter and
substituting Eq. (50) into MHD shock conditions (46)–(49), we ob-
tain self-similar MHD shock conditions
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a1ðnx1 � v1Þ ¼ ka2ðnx2 � v2Þ; ð51Þ

Ca2�nþ3nq=2
1 x2q

1 ðnx1 � v1Þq þ a1ðnx1 � v1Þ2 þ
ha2

1x2
1

2

¼ k2 Ca2�nþ3nq=2
2 x2q

2 ðnx2 � v2Þq þ a2ðnx2 � v2Þ2 þ
ha2

2x2
2

2

� �
; ð52Þ

ðnx1 � v1Þ2 þ
2c
ðc� 1ÞCa1�nþ3nq=2

1 x2q
1 ðnx1 � v1Þq þ 2ha1x2

1

¼ k2 ðnx2 � v2Þ2 þ
2c
ðc� 1ÞCa1�nþ3nq=2

2 x2q
2 ðnx2 � v2Þq þ 2ha2x2

2

� �
ð53Þ

in terms of the dimensionless reduced variables. Once we have
ðx2;a2; v2Þ on the downstream side of a shock, we can determine
ðx1;a1; v1Þ on the upstream side using MHD shock conditions
51,52,54 (Wang and Lou, 2008) or vice versa. In cases of q ¼ 2=3,
there are only two independent relations among 51,52,54 (Lou
and Cao, 2008); therefore one may choose parameter k > 0 fairly
arbitrarily, e.g. k ¼ 1.
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