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Magnetized massive stars as magnetar progenitors
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ABSTRACT
The origin of ultra-intense magnetic fields on magnetars is a mystery in modern astrophysics.
We model the core collapse dynamics of massive progenitor stars with high surface magnetic
fields in the theoretical framework of a self-similar general polytropic magnetofluid under
self-gravity with a quasi-spherical symmetry. With the specification of physical parameters
such as mass density, temperature, magnetic field and wind mass-loss rate on the progenitor
stellar surface and the consideration of a rebound shock breaking through the stellar interior
and envelope, we find a remnant compact object (i.e. neutron star) left behind at the centre
with a radius of ∼106 cm and a mass range of ∼1−3 M�. Moreover, we find that surface
magnetic fields of such a type of compact objects can be ∼1014–1015 G, consistent with
those inferred for magnetars which include soft gamma-ray repeaters and anomalous X-ray
pulsars. The magnetic field enhancement factor critically depends on the self-similar scaling
index n, which also determines the initial density distribution of the massive progenitor. We
propose magnetized massive stars as magnetar progenitors based on the magnetohydrodynamic
evolution of the gravitational core collapse and rebound shock. Our physical mechanism, which
does not necessarily require ad hoc dynamo amplification within a fast spinning neutron star,
favours the ‘fossil-field’ scenario of forming magnetars from the strongly magnetized core
collapse inside massive progenitor stars. The resulting magnetic field strength on the surface
of the remnant proto-neutron star is proportional to the surface magnetic field strength of
the progenitor and to the neutron star mass itself, while it anti-correlates with the progenitor
stellar mass. With a range of surface magnetic field strengths over massive progenitor stars, our
scenario allows a continuum of magnetic field strengths from pulsars to magnetars. The intense
Lorentz force inside a magnetar may break the crust of a neutron star into pieces to various
extents. Coupled with the magnetar spin, the magnetospheric configuration of a magnetar is
most likely variable in the presence of exposed convection, differential rotation, equatorial
bulge, bursts of interior magnetic flux ropes as well as rearrangement of broken pieces of the
crust. Sporadic and violent releases of accumulated magnetic energies and a broken crust are
the underlying causes for various observed high-energy activities of magnetars.

Key words: MHD – shock waves – stars: magnetic fields – stars: neutron – white dwarfs –
supernova remnants.

1 IN T RO D U C T I O N

Magnetars are believed to be neutron stars with surface magnetic
field strengths considerably stronger than the quantum critical value
of BQED = 4.4 × 1013 G. There are two main types of observational
manifestations for magnetars: (i) soft gamma-ray repeaters (SGRs)
and (ii) anomalous X-ray pulsars (AXPs). Up to now, six SGRs and

�E-mail: hu-ry07@mails.tsinghua.edu.cn (R-YH); louyq@tsinghua.edu.cn;
lou@oddjob.uchicago.edu (Y-QL)

10 AXPs have been identified observationally (see Mereghetti 2008
for a latest list and an extensive review; also note recent power-
ful explosions of SGR J1550−5418 with a shortest spin period of
2.07 s). Most recently, a new Galactic magnetar candidate is reported
with very fast optical flares (Castro-Tirado et al. 2008; Kouveliotou
2008; Stefanescu et al. 2008), suggesting a continuum from ordinary
dim isolated neutron stars to magnetars. The ultra-intense surface
magnetic fields on magnetars are unique in the Universe, and they
are responsible for various high-energy activities, for example the
giant γ -ray flare of SGR 1806−20 (e.g. Hurley et al. 2005; Palmer
et al. 2005). Magnetar-like X-ray emissions are also detected from a
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rotation-powered pulsar PSR J1846−0258 with an inferred intense
magnetic field of ∼ 4.9 × 1013 G at the centre of supernova remnant
Kes75 (e.g. Archibald et al. 2008; Gavriil et al. 2008).

Recent observations have also provided clues connecting mag-
netars with very massive progenitor stars, for example an infrared
elliptical ring or shell was discovered surrounding the magnetar
SGR 1900+14 (e.g. Wachter et al. 2008). However, the formation
of magnetars, especially the origin of the ultra-intense magnetic
field, remains an important open issue. There are two major con-
tending physical scenarios, namely the dynamo scenario versus the
fossil-field scenario.

Duncan & Thompson (1992) and Thompson & Duncan (1993)
explored the turbulent dynamo amplification, occurring primarily
in the convection zone of the progenitor, as well as in a differen-
tially rotating nascent neutron star, and concluded that a very strong
magnetic field, in principle up to ∼3 × 1017 G, may be created.
The dynamo mechanism requires an extremely rapid rotation of a
nascent neutron star with a spin period of a few milliseconds. How-
ever, the current population of magnetars appear to be slow rotators,
having spin periods in the range of ∼2–12 s (e.g. Mereghetti 2008).
Therefore, the neutron star dynamo scenario for magnetars faces
a considerable challenge to account for the fact of slowly rotating
magnetars as observed so far.

The fossil-field scenario for the magnetism of compact ob-
jects was first proposed to explain magnetic white dwarfs (e.g.
Braithwaite & Spruit 2004; Ferrario & Wickramasinghe 2005;
Wickramasinghe & Ferrario 2005; Lou & Wang 2007). It is conceiv-
able that the magnetic field of white dwarfs may be of fossil origin
from the main-sequence phase of their progenitors, and the attempt
to link magnetic white dwarfs with their main-sequence progenitors
naturally makes the chemically peculiar Ap and Bp stars plausible
candidates. Observations of Aurière et al. (2003) have shown that
chemically peculiar Ap and Bp stars are generally magnetic indeed,
with a surface magnetic field of ∼100 G by Zeeman splittings. In
general, magnetic field strengths fall in the range of ∼3 × 102−
3 × 104 G (e.g. Braithwaite & Spruit 2004 and references therein).
Magnetic white dwarfs may be created as a result of a re-
bound shock explosion (Lou & Wang 2007) and may further give
rise to novel magnetic modes of global stellar oscillations (Lou
1995). By magnetic flux conservation during the stellar evolution,
Ferrario & Wickramasinghe (2005) argued that stellar magnetic
fields (∼100 G) in their main-sequence phase can be enhanced up
to the range of ∼106–109 G on the surface of magnetic white dwarfs.
This fossil-field scenario is supported by the statistics for the mass
and magnetic field distributions of magnetic white dwarfs.

Based on the same scenario and a similar physical argument,
Ferrario & Wickramasinghe (2006) further suggested that the ultra-
intense magnetic field over the surface of magnetars may also come
from fossil magnetic fields. The progenitors of magnetars are ex-
pected to be O stars and early B stars with high surface magnetic
fields of ∼1000 G. Ferrario & Wickramasinghe (2008) presented
a population synthesis study of the observed properties of magne-
tars and found that magnetars arise from high-mass progenitor stars
(20 � M � 45 M�).

Up to now magnetic fields have been directly measured for two
O stars, namely θ 1Ori C (∼1 kG; e.g. Donati et al. 2002) and
HD 191612 (∼1.5 kG; e.g. Donati et al. 2006), and a couple of
early B stars, for example the B0.5V star HD 37061 (∼650 G;
e.g. Hubrig et al. 2006). Petit et al. (2008a,b) carried out systematic
spectropolarimetric observations to search for magnetic fields on all
massive OB stars in the Orion Nebula Cluster star-forming region.
Strong magnetic fields of the order of kG were inferred on three stars

out of a sample of eight. The existence of strong magnetic fields on
OB stars even appears somewhat overwhelming in contrast to the
very few magnetars that have been discovered so far.

With the assumption that neutron stars form during the collapse
of massive progenitors in the Galactic disc with 8 � M/M� �
45 (stellar masses in the main-sequence phase), and ∼8 per cent
of massive stars have surface magnetic fields higher than
∼1000 G, Ferrario & Wickramasinghe (2006) estimated that these
high-field massive progenitors gave birth to 24 neutron stars with
magnetic field �1014 G, consisting of a major part of magnetars.
While the fossil-field scenario appears plausible from the perspec-
tive of statistics, it is highly instructive to have a more direct magne-
tohydrodynamic (MHD) model description for the core collapse of
high-field massive progenitor stars and to check whether compact
remnants left behind MHD rebound shocks do possess ultra-intense
magnetic fields.

In this paper, we attempt to model magnetized massive progenitor
stars with a quasi-spherical general polytropic magnetofluid under
self-gravity (Wang & Lou 2008; Lou & Hu 2009). We examine
semi-analytic and numerical solutions to explore the self-similar
MHD evolution emerging from dynamic processes of core collapse
and rebound shock travelling in the stellar envelope with a wind
mass loss.

More specifically, we adopt a general polytropic equation of state
(EoS) p = κ(r , t)ργ with p, ρ, γ and κ , respectively, being the gas
pressure, mass density, polytropic index and a proportional coeffi-
cient dependent on radius r and time t. Here, κ is closely related
to the ‘specific entropy’ and is not necessarily a global constant.
By ‘specific entropy’ conservation along streamlines, another key
parameter q arises in self-similar dynamics (see Wang & Lou 2008).
For κ being a global constant, or equivalently q = 0, the general
polytropic EoS reduces to a conventional polytropic EoS. By further
setting γ = 1, a conventional polytropic gas reduces to an isother-
mal gas (e.g. Lou & Shen 2004). We also require γ � 1 to ensure a
positive specific enthalpy p/(γ − 1).

Chiueh & Chou (1994) studied the isothermal MHD by includ-
ing the magnetic pressure gradient force in the radial momentum
equation. Yu & Lou (2005), Yu et al. (2006), Wang & Lou (2007)
and Wang & Lou (2008) generalized the self-similar hydrodynamic
framework by including a completely random transverse mag-
netic field with the approximation of a ‘quasi-spherical’ symmetry
(e.g. Zel’dovich & Novikov 1971); the radial component of such
a magnetic field is much weaker than the transverse components.
We conceive a simple ‘ball of thread’ scenario for random magnetic
fields in a massive progenitor star. In other words, a magnetic field
line follows the ‘thread’ meandering within a thin spherical ‘layer’
in space in a completely random manner. Strictly speaking, there
is always a weak radial magnetic field component such that field
lines in adjacent ‘layers’ remain physically connected throughout
in space. In particular, we emphasize that the nature of the random
magnetic fields inside a progenitor star may be either those gener-
ated by the dynamo mechanism probably linked with convection
and differential rotation (e.g. Spruit 2002; Heger, Woosley & Spruit
2005), or those of ‘fossil fields’ entrained from molecular clouds
in dynamic processes of star formation (e.g. Wang & Lou 2007,
2008).

According to numerical simulations of differentially rotating
magnetized stars by Heger et al. (2005), the dynamo-powered ra-
dial magnetic fields in a progenitor star are about 3 to 4 orders
of magnitude weaker than the transverse magnetic fields during
the pre-supernova evolution. In line with this hint, we simplify the
treatment by only dealing with the dominant transverse field and

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 396, 878–886

 at C
alifornia Institute of T

echnology on D
ecem

ber 23, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


880 R.-Y. Hu and Y.-Q. Lou

focus on their dynamic effects on the bulk motion of gas in the
radial direction. By taking the ensemble average of magnetic fields
in each thin spherical ‘layer’, we smooth out small-scale magnetic
field structures and are left with ‘layers’ of large-scale transverse
magnetic fields. We also presume that small-scale non-spherical
flows as a result of the magnetic tension force may be neglected as
compared to large-scale mean radial bulk flow motions. Therefore,
on large scales, a completely random magnetic field contributes to
the dynamics in the form of the average magnetic pressure gra-
dient force and the average magnetic tension force in the radial
direction.

This theoretical model framework of self-similar MHD has been
applied to gravitational core collapse and rebound shock processes
within progenitor stars for supernovae. Lou & Wang (2006, 2007)
modelled the hydrodynamic and MHD rebound shocks of super-
novae in the self-similar phase of evolution. Hu & Lou (2008b)
presented preliminary results for a shock breakout to reproduce
the early X-ray light curve of supernova SN 2008D (e.g. Mazzali
et al. 2008; Soderberg et al. 2008). In this paper, we demonstrate
that such a self-similar MHD process may give birth to a compact
remnant with a nuclear density and a range of ultra-intense surface
magnetic fields. We will see that massive progenitor stars whose
collapsing cores have magnetic fluxes similar to those of magnetars
will eventually collapse into neutron stars with a magnetar level
of magnetic fluxes because of the magnetic flux conservation. In
our model scenario, the neutron star dynamo processes and the
required initial rapid spins of nascent neutron stars may not be
necessary.

2 G ENERAL POLY TROPIC SELF-SIMILAR
M AG N E TO H Y D RO DY NA M I C S

Under the approximation of quasi-spherical symmetry and based
on the physical idea outlined in the Introduction, the ideal MHD
equations involve mass conservation, the radial momentum equa-
tion, specific entropy conservation along streamlines and the mag-
netic induction equation (see Wang & Lou 2008). We highlight the
essential parts of this formulation of non-linear MHD equations
below.

2.1 Theoretical MHD model formulation

The ideal magnetic induction equation (without the resistivity) im-
plying the frozen-in condition for the magnetic flux can be cast into
the following form:

(
∂

∂t
+ u

∂

∂r

)
(r2〈B2

t 〉) + 2r2〈B2
t 〉

∂u

∂r
= 0, (1)

where u is the bulk radial flow speed and 〈B2
t 〉 is the ensemble mean

square of a random transverse magnetic field. The weak radial com-
ponent of the magnetic field is determined by equations (10) and
(11) of Yu & Lou (2005). With a self-similar MHD transforma-
tion (Wang & Lou 2008), the ideal MHD equations together with
the magnetic flux frozen-in condition and the general polytropic
EoS can be readily reduced to a set of non-linear MHD ordinary
differential equations (ODEs) in the highly compact form of

X (x, α, v)α′ = A(x, α, v), X (x, α, v)v′ = V(x, α, v), (2)

where the prime ′ stands for the first derivative d/dx, and the three
functionals X ,A and V are defined by

X (x, α, v) ≡ C

[
2 − n + (3n − 2)

2
q

]

×α1−n+3nq/2x2q (nx − v)q + hαx2 − (nx − v)2,

A(x, α, v) ≡ 2
x − v

x
α[Cqα1−n+3nq/2x2q (nx − v)q−1

+ (nx − v)] − α

[
(n − 1)v + (nx − v)

(3n − 2)
α + 2hαx

+Cqα1−n+3nq/2x2q−1(nx − v)q−1(3nx − 2v)

]
,

V(x, α, v) ≡ 2
(x − v)

x
α

[
C

(
2 − n + 3n

2
q

)

×α−n+3nq/2x2q (nx − v)q + hx2

]

− (nx − v)

[
(n − 1)v + (nx − v)

(3n − 2)
α + 2hαx

+Cqα1−n+3nq/2x2q−1(nx − v)q−1(3nx − 2v)

]
.

(3)

In this straightforward yet somewhat tedious derivation, we have
useful relations m = αx2(nx − v) and q ≡ 2(n + γ − 2)/(3n − 2),
and have performed the following MHD self-similar transformation
for a general polytropic gas, namely

r = k1/2tnx, u = k1/2tn−1v,

ρ = α

4πGt2
, p = kt2n−4

4πG
Cαγ mq,

M = k3/2t3n−2m

(3n − 2)G
,

〈
B2

t

〉 = kt2n−4

G
hα2x2, (4)

where G = 6.67 × 10−8 g−1 cm3 s−2 is the gravitational constant, M
is the enclosed mass at time t within radius r, x is the independent
self-similar variable, v(x) is the reduced flow speed, α(x) is the
reduced mass density, m(x) is the reduced enclosed mass, k, n and C
are three parameters and the dimensionless coefficient h is referred
to as the magnetic parameter such that 〈B2

t 〉 = 16hπ2Gρ2r2. It
follows that q = 2/3 leads to γ = 4/3 for a relativistically hot gas.
Only for the case of q = 2/3 can the parameter C be independently
chosen; otherwise for q 	= 2/3, C can be set to 1 without loss of
generality (Lou & Cao 2008; Lou & Hu 2009). The magnetosonic
critical curve (MCC) is determined by the simultaneous vanishing
of the numerator and denominator on the right-hand sides of ODEs
(2) and (3). Once solutions are obtained for v(x) and α(x), the
mean magnetic field strength 〈B2

t 〉1/2 can be readily determined
from self-similar MHD transformation (4). With proper asymptotic
conditions as well as eigen-derivatives across the MCC, non-linear
MHD ODEs (2) and (3) can be numerically integrated by using the
standard fourth-order Runge–Kutta scheme (e.g. Press et al. 1986).

It is straightforward to treat MHD shock conditions for self-
similar solutions to cross the magnetosonic singular surface
X (x, α, v) = 0. By the conservation of mass, radial momentum
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Intense magnetic fields on magnetars 881

and energy as well as the magnetic induction equation in the co-
moving framework of reference across a MHD shock front, we
obtain a set of jump conditions for a MHD shock that can be cast
into a self-similar form (see Appendix A; Wang & Lou 2008; Lou
& Hu 2009). Note that the so-called ‘sound’ parameter k in self-
similar MHD transformation (4) is related to the polytropic sound
speed and changes across a shock front, with the relations k2 =
λ2k1, h1 = h2 = h, x1 = λx2 where subscripts 1 and 2 refer to the
immediate upstream and downstream sides of a shock and λ is a
dimensionless scaling parameter. Strictly speaking, magnetic fields
have very weak radial components normal to the shock front. Our
treatment of magnetic field coplanar with the shock front represents
a very good approximation for our purposes.

2.2 Analytic asymptotic MHD solutions

The analytic asymptotic solutions at large x of non-linear coupled
MHD ODEs (2) and (3) are

α = Ax−2/n + · · · ,

v = Bx1−1/n +
{

−
[

n

(3n − 2)
+ 2h(n − 1)

n

]
A

+ 2(2 − n)nq−1A1−n+3nq/2

}
x1−2/n + · · · , (5)

where A and B are two integration constants, referred to as the
mass and velocity parameters (Wang & Lou 2008). To ensure the
validity of asymptotic MHD solution (5), we require 2/3 < n �
2; the inequality n > 2/3 is directly related to self-similar MHD
transformation (4) where a positive M is mandatory on the grounds
of physics. For 2/3 < n � 1, both mass and velocity parameters
A > 0 and B are fairly arbitrary. In case of 1 < n � 2, we should
require B = 0 to avoid a divergent v(x) at large x unless a flow
system is truncated. Using this asymptotic solution at large x as
initial conditions, the key scaling index n determines the initial
mass density distribution as ρ ∝ r−2/n. In our self-similar scenario,
the valid range of exponent n corresponds to a range of density
power laws ρ ∝ r−3 to r−1.

By setting v = 0 for all x in non-linear MHD ODEs (2) and (3),
we readily obtain an exact global magnetostatic solution, namely

α = A0x
−2/n, (6)

where the proportional coefficient A0 is given by

A0 =
[

n2 − 2(1 − n)(3n − 2)h

2(2 − n)(3n − 2)
n−q

]−1/(n−3nq/2)

. (7)

This describes a magnetostatic singular polytropic sphere (SPS)
with a substantial generalization of q 	= 0; the case of q = 0 or
n + γ = 2 is included here and corresponds to a conventional
polytropic gas in magnetostatic equilibrium. A further special case
of n = γ = 1 corresponds to a magnetostatic singular isothermal
sphere. Physically, expression (7) requires q 	= 2/3 and h < hc ≡
n2/[2(1 − n)(3n − 2)] for the existence of the global magnetostatic
SPS solution in a general polytropic gas. For n = 4/5, hc reaches
the minimum value hc = 4. This places a constraint only when n <

1; while for n � 1, parameter h > 0 is fairly arbitrary.
There exists an analytic asymptotic MHD solution approaching

the magnetostatic SPS solution at small x (referred to as the ‘quasi-
magnetostatic’ asymptotic solution), namely v = LxK and α =
A0x

−2/n +NxK−1−2/n, where K is the root of the following quadratic

equation:[
n2

2(3n − 2)
+ nh + (3n − 2)

2
Q

][
K2 + (3n − 4)

n
K

]

+2(2 − n)(1 − n)

n
h + n2 + (3n − 2)2(1 − 4/n)Q

(3n − 2)
= 0, (8)

where Q ≡ q{n2/[2(2 − n)(3n − 2)] − (1 − n)h/(2 − n)} is
introduced for notational clarity (Lou & Wang 2006, 2007). In a
certain regime, at least one root of quadratic equation (8) satisfies
�(K) > 1 and therefore quasi-magnetostatic solutions do exist.
The two coefficients L and N are simply related by the following
algebraic expression:

n(K − 1)N = (K + 2 − 2/n)A0L. (9)

In this case, the magnetic Lorentz force (i.e. magnetic pressure and
tension forces together) and the gas pressure force are in the same
order of magnitude in the regime of small x.

It can be proved that the parameter regimes where quasi-
magnetostatic solutions exist are γ � 1, h < hc, q < 2/3, n <

0.8 and γ � 1, h < hc, q > 2/3. With parameters outside these two
regimes, the so-called strong-field asymptotic solutions at small x,
for which the magnetic force dominates over the thermal pressure
force, have been shown to exist (Yu et al. 2006; Wang & Lou 2007,
2008).

3 FO R M AT I O N O F C O M PAC T M AG N E TA R S

3.1 Model progenitors and compact remnants

To be specific, the radial range of our model solutions is set within
r i < r < ro, where r i = 106 cm if the compact object is a neutron
star or black hole, and ro = 1012 cm as the radius of a typical
massive main-sequence star (e.g. Herrero et al. 1992; Schönberner
& Harmanec 1995). Massive stars may have undergone tremendous
mass losses before the onset of gravitational core collapses, and a
progenitor immediately before a core collapse may have already
lost the entire hydrogen envelope and become a compact Wolf–
Rayet star with a radius of ∼1011 cm and a mass of ∼4–8 M�
(see e.g. Mazzali et al. 2008 and Soderberg et al. 2008 for recent
observations). We attempt to further identify plausible conditions
of forming magnetars by gravitational core collapses of massive
progenitor stars.

At the initial time of our analysis, the model should approxi-
mately represent the final stage of a massive progenitor star before
the gravitational core collapse. The mass density, temperature and
magnetic field on the progenitor stellar surface can be inferred from
the observed range. From these quantities, one estimates the dimen-
sionless magnetic parameter h, which plays an important role in the
MHD evolution of quasi-magnetostatic solutions. By self-similar
MHD transformation (4) and the ideal gas law, we have

Ck1−3q/2 = kBT

μ(4πG)γ−1Gq (3n − 2)qργ−1Mq
, (10)

where T is the gas temperature, kB is Boltzmann’s constant and
μ is the mean molecular (atomic) weight for gas particles. For a
gas mainly of ionized hydrogen and a stellar mass of several solar
masses, one can estimate parameter k according to expression (10)
from γ and the local mass density ρ and temperature T . For typical
values of ρ ∼ 10−5 g cm−3 and T ∼ 105–106 K on the stellar surface
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of a massive progenitor in the late phase (just before the gravitational
core collapse) and γ = 1.3 and n = 0.7, we estimate a range of k ∼
1016–1017 cgs units.

With t → 0+ and/or r → ∞ (i.e. for the regime of large x),
self-similar MHD solutions follow asymptotic form (5). For such
analytic asymptotic solutions, the mass density simply scales as

ρ = Ak1/n

4πG
r−2/n (11)

and is independent of time t. The reason to refer A as the mass pa-
rameter is now apparent. With asymptotic mass density scaling (11),
one can estimate A from the surface mass density of a progenitor
star. We have the radial flow velocity

u = Bk1/(2n)r1−1/n, (12)

also independent of t. The radial flow velocity near the stellar surface
relates to the mass accretion rate or mass-loss rate by

Ṁ = −4πr2ρu. (13)

With expressions (12) and (13), one can determine velocity param-
eter B from the stellar mass-loss rate for B > 0 or mass accre-
tion rate for B < 0. Observationally, mass-loss rates of Galactic
OB stars fall in the range of ∼10−5–10−7 M� yr−1 (e.g. Lamers
& Leitherer 1993). Mass-loss rates of Wolf–Rayet stars are much
higher than massive main-sequence stars, falling in the range of
∼10−4–10−6 M� yr−1 (e.g. Singh 1986). Very recently, Puls, Vink
& Najarro (2008) provide an extensive review on mass-loss rates of
massive stars.

In summary, with the mass density, temperature, magnetic field
and mass-loss rate specified at the surface of a massive progenitor
star, one can determine all parameters of asymptotic solution (5) and
integrate non-linear MHD ODEs (2) and (3) inwards to produce
a MHD profile for the progenitor interior and envelope. We still
have the freedom to choose the rebound shock position after the
gravitational core collapse. Physically, the speed of the rebound
shock depends on the core collapse, for example the EoS and the
neutrino reheating, etc. Here, we simply treat it as an adjustable
parameter to search for downstream solutions within the shock
front as x → 0+.

With t → ∞ and/or r → 0+ (i.e. for the regime of small x), the
final evolution may approach either a quasi-magnetostatic solution
(Lou & Wang 2007) or the strong-field solutions (Wang & Lou
2007, 2008). It is desirable that after a long lapse (i.e. t → ∞),
the enclosed mass within ri evolves towards a constant value and
form a compact remnant of nuclear mass density. Asymptotically,
the enclosed mass takes the form of

M = nk1/nA0

(3n − 2)G
r3−2/n (14)

for quasi-magnetostatic solutions and becomes independent of t.
This appears consistent with the scenario of forming a central com-
pact object with a strong magnetic field (Lou & Wang 2007). In a
companion paper, we will show that the asymptotic enclosed mass
for strong-field solutions depends on t, and may be invoked to model
a continuous accretion or outflow around a nascent neutron star (Hu
& Lou, in preparation). As quasi-magnetostatic solutions require
that h < hc, we arrive at an interesting situation, i.e. in order to give
birth to a stable neutron star with an ultra-intense magnetic field, the
massive progenitor star needs to be magnetized but not too much.
We shall see presently that h < hc is generally satisfied for massive
main-sequence stars.

We now introduce the outer initial mass Mo,ini and the inner ulti-
mate mass M i,ult in the same manner as done in Lou & Wang (2006,

2007) and regard them as rough estimates for the initial progenitor
mass and the final mass of the remnant compact object, respectively.
The ratio of these two masses is given by 1/fM ≡ Mo,ini/M i,ult =
λ∗(ro/r i)(3−2/n) with λ∗ ≡ (A/A0)λ−2/n. The ratio of the outer
initial magnetic field strength at the surface of the progeni-
tor star to the inner final magnetic field strength at the sur-
face of the central compact remnant is 1/fB ≡ 〈B2

o,ini〉1/2/

〈B2
i,ult〉1/2 = λ∗(ro/r i)(1−2/n). The factor λ∗ is relatively insignificant

as compared to the radial variation of the magnetic field strength,
i.e. the very radial dependence of r (1−2/n). As n → 2/3 and the
polytropic index γ approaches 4/3, this scaling approaches r−2.
With ro = 1012 cm and r i = 106 cm, the magnetic field strength can
be rapidly enhanced by a factor of up to ∼1012. Thus, for a mag-
netar (i.e. neutron star) to have a surface magnetic field strength of
〈B2

i,ult〉1/2 ∼1015 G, we need a magnetic field of ∼103 G over the
progenitor stellar surface, which is attainable for magnetic massive
OB stars.

As defined immediately above, it is straightforward to demon-
strate that the magnetic field strength enhancement f B is propor-
tional to the mass ratio f M , i.e. f B/f M = (ro/ri)2. We then obtain a
simple and useful formula

〈
B2

i,ult

〉1/2 = 〈
B2

o,ini

〉1/2 Mi,ult

Mo,ini

(
ro

ri

)2

. (15)

We therefore establish an explicit upper limit for the result-
ing surface magnetic field strengths of magnetars given the
Tolman–Oppenheimer–Volkoff (TOV) mass limit for neutron stars
(∼3–3.2 M�: Rhoades & Ruffini 1974) as

〈
B2

i,ult

〉1/2
<

MTOV

Mo,ini

(
ro

ri

)2 〈
B2

o,ini

〉1/2
. (16)

The surface magnetic field strength of a magnetar is proportional
to the surface magnetic field strength of the progenitor, the square
of the ratio for two radii, and the ultimate neutron star mass, while
being inversely proportional to the progenitor stellar mass.

3.2 Numerical model calculations

The initial time to apply our solutions is estimated by the time
when the rebound shock crosses ri, namely t1 = [r i/(k1/2 xs)]1/n

(Lou & Wang 2006). Here, we suppose that roughly from t1 on the
collapse and rebound shock inside the progenitor star have already
evolved into a self-similar phase (typically this process takes a
few milliseconds). The rebound shock travels outwards through the
stellar interior into the envelope in ∼104–106 s (e.g. Lou & Wang
2007; Hu & Lou 2008a; Lou & Hu 2009). We set t2 as the time when
the rebound shock reaches ro, roughly around the shock breakout.
We will also show self-similar MHD solutions at tm1 = 1 s as an
intermediate time between t1 and t2, and at t = ∞.

As an example of illustration, we choose n = 0.673, q = 0,
γ = 1.327 for a conventional polytropic gas. From the analysis
in Section 3.1, solutions with a smaller n (>2/3) tend to give
a larger M i,ult and 〈B2

i,ult〉1/2. The choice of parameters here is a
compromise among multiple numerical tests. With a typical sur-
face mass density of 2.5 × 10−5 g cm−3, a surface temperature 3
× 104 K, a mass-loss rate 10−6 M� yr−1 and a surface magnetic
field strength 103 G for a massive progenitor star, we estimate k1 =
1.55 × 1016 cgs units, A = 8.4378, B = 1.27 × 10−7 and h = 1.52 ×
10−4. Such a parameter h ensures that a stellar core collapse evolves
in a quasi-magnetostatic manner for small x. Here, inequality
h < hc is readily satisfied for this set of adopted parameters. We
set a rebound shock reaching a radius r = 109 cm at t = 1 s, which
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Figure 1. The radial profiles of mass density, radial flow velocity, enclosed mass and transverse magnetic field at four different epochs. For all panels, the
dash–dotted, solid, dashed and dotted curves are at t1, tm1, t2 and t = ∞, respectively. Mass density, velocity and magnetic field profiles are multiplied by
numerical factors marked along the curves for a compact presentation.

fixes the shock location and travel speed. With these parameters, a
global self-similar rebound shock solution can be constructed, and
the temporal evolution is shown in Fig. 1 at sampled epochs t1 =
3.49 × 10−5 s, tm1, t2 = 2.87 × 104 s and t = ∞.

The initial progenitor mass is around 5.59 M�, consistent with
observations of Soderberg et al. (2008). At epoch t1 (dash–dotted
curve), the rebound shock has not yet emerged. The radial velocities
around the surface of the proto-neutron star point inwards, corre-
sponding to a core collapse process leading to a subsequent rebound
shock travelling outwards inside the progenitor envelope. Mean-
while, the outer part of the progenitor envelope still flows slowly out-
wards for a stellar wind. Such a kind of self-similar shock manifesta-
tion with a collapsing inner part and an expanding outer part is made
possible from the quasi-magnetostatic asymptotic solutions (see
Lou & Wang 2006) and is another form of envelope expansion with
core collapse (EECC) proposed by Lou & Shen (2004). At epoch
tm1 (solid curve), the outgoing rebound shock emerges and travels
within the stellar envelope. Fig. 1 clearly shows this discontinuity
across the outgoing MHD shock front. The rebound shock evolves in
a self-similar manner with an outgoing speed decreasing with time
t for n < 1 (see Hu & Lou 2008b for a comparison with numerical
simulations). The immediate downstream side of the shock has an
outward velocity, and the immediate upstream side has an inward ve-
locity. The enclosed mass of the downstream side decreases rapidly
towards the centre while that of the upstream side remains nearly
unchanged. Across the shock front, both mass density and magnetic
field strength are enhanced by a factor of 6.96. It can be derived that
〈B2

t 〉1/2
1 /〈B2

t 〉1/2
2 = ρ1/ρ2 = 2/[(γ +1)M2

1]+(γ −1)/(γ +1), where
M1 is the upstream Mach number in the comoving shock frame-
work of reference. The maximum enhancement across the shock is
(γ + 1)/(γ − 1) = 7.12 for our adopted value of polytropic index
γ = 1.327.

This rebound shock breaks out from the stellar envelope in
t2 ∼ 3 × 104 s. We see at that moment that the flow velocity within
the spherical volume previously occupied by the progenitor star be-
comes very much reduced in the wake of the rebound shock, and
the gas there gradually approaches the quasi-magnetostatic phase
of evolution. Coupled with radiation mechanisms, for instance the
thermal bremsstrahlung of hot electrons with a temperature T �
107 K, and using the dynamic profiles shown in Fig. 1, one may
compute the radiation detected and reproduce the X-ray or γ -ray
light curves observed (e.g. Hu & Lou 2008b; Mazzali et al. 2008;
Soderberg et al. 2008). Eventually, flow velocities of the entire
system tend to zero and the enclosed masses at all radii remain
unchanged. From Fig. 1, we see that for the initial and final stages
of the MHD evolution, the mass density and magnetic field distri-
butions obey power laws, consistent with the asymptotic analysis
in Section 3.1. Finally, within radius ri of the inner compact rem-
nant, the enclosed mass is 2.15 M� with a mean density of 1.02 ×
1015 g cm−3 for a neutron star. As the mean surface magnetic field
strength is 〈B2

i,ult〉1/2 ∼ 4.70 × 1014 G, this neutron star should be
indeed regarded as a magnetar. With expression (16), the maximum
resulting magnetic field strength of such an initial configuration
would be 〈B2

i,ult〉1/2 < 5.72 × 1014 G.
Numerical explorations indicate that the ultimate magnetic field

on the neutron star is proportional to the initial magnetic field on
the progenitor stellar surface. However, the magnetic enhancement
factor 〈B2

i,ult〉1/2/〈B2
o,ini〉1/2 and the mass ratio M i,ult/Mo,ini indeed

depend on model parameters and, in particular, on shock properties
and self-similar scaling indices n and q. As long as the density
scales as r−2/n, index n must be set to approach the limiting value
2/3 to ensure a sufficiently massive progenitor star. In Fig. 2, we
plot these two ratios versus the selected rebound shock radii at
t = 1 s for different values of q. The two curves suggest that a shock
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Figure 2. The dependence of the ensemble-averaged magnetic field strength
enhancement factor fB = 〈B2

i,ult〉1/2/〈B2
o,ini〉1/2 and the mass ratio fM =

M i,ult/Mo,ini on the MHD rebound shock radii for different values of scaling
parameter q for stellar configurations with n = 0.673, γ = 1.327, a mass
density 2.5 × 10−5 g cm−3 at the stellar surface, a surface temperature
3 × 104 K, a surface magnetic field strength 2 × 103 G of the progenitor,
and a mass-loss rate 10−6 M� yr−1. For these values of parameters, we have
fM = fB × 10−12 with ri = 106 cm and ro = 1012 cm. From top to bottom,
the curves show these two ratios for cases with q = −0.5, −0.4, −0.3, −0.2,
−0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, respectively.

with a medium travel speed is associated with a minimum mass ratio
fM and thus a minimum magnetic field enhancement f B. Note that the
magnetic enhancement factor does not exceed 1012. With a larger
q, both the mass ratio and magnetic enhancement factor become
less. The qualitative behaviours of quasi-magnetostatic solutions in
general polytropic cases are similar to the conventional polytropic
cases.

Our self-similar MHD rebound shock model analysis suggests
that should there be a continuum of stellar surface magnetic field
strengths over massive progenitor stars, there is then a correspond-
ing continuum from normal radio pulsars to magnetars in terms of
magnetic field strengths over the compact stellar surface. The key
factors that decide whether a remnant neutron star possesses an
ultra-intense magnetic field include scaling indices n and q, the ini-
tial surface magnetic field of the progenitor star and the strength (or
speed) of the rebound shock. Our analysis also resolves the difficulty
posed by the survey of Petit et al. (2008b). That is, a massive pro-
genitor star with a proper range of surface magnetic field strengths
most likely but not necessarily leads to a magnetar after the gravi-
tational core collapse and the emergence of a rebound shock. There
are additional constraints to be satisfied. Fig. 2 demonstrates that
the magnetic enhancement factor cannot exceed ∼1012, and may
be as low as ∼1011 even as n → 2/3. This implies that the condi-
tions for producing magnetars are fairly strict. Another major limit
arises as the fact that the magnetic enhancement factor correlates to
the mass ratio. If this mass ratio is too high, the compact remnant
mass may exceed the Tolman–Oppenheimer–Volkoff (TOV) limit
(∼3–3.2 M�; Rhoades & Ruffini 1974), and the core object would
collapse further to form a black hole. The upper bound for the mass
of neutron stars then places a limit on their surface magnetic field
strengths as clearly indicated by expression (16).

4 C O N C L U S I O N S A N D D I S C U S S I O N

We combine semi-analytic and numerical self-similar MHD solu-
tions to model the gravitational core collapse, the rebound shock

explosion of a magnetized massive progenitor star and the formation
of a central remnant compact magnetar. As a natural extension and
generalization to the recent supernova rebound shock models of Lou
& Wang (2006, 2007), we invoked quasi-magnetostatic asymptotic
solutions and asymptotic solutions far away from the centre for a
general polytropic magnetofluid. With the magnetic frozen-in con-
dition imposed, the surface magnetic field of a nascent neutron star
can be very much stronger than that of its progenitor by a factor of
∼1011–1012 during processes of the gravitational core collapse and
the self-similar rebound shock breakout. Therefore, if the progenitor
is a magnetic massive star with a surface magnetic field strength of
∼103 G, it would have a good chance to produce a magnetar at
the centre of its supernova remnant. Here, we propose that mag-
netars may be produced through powerful supernova explosions
of magnetized massive progenitor stars. Such a physical origin is
also supported by statistical inferences from observational surveys
(e.g. Ferrario & Wickramasinghe 2006). While the magnetic flux of
the collapsing core inside the progenitor star may come from either
main-sequence stellar dynamo processes or ‘fossil fields’ of molecu-
lar clouds, it will be dragged and squeezed into the newborn neutron
star by the conservation of magnetic fluxes. At least for magnetic
massive stars as magnetar progenitors, the post-supernova dynamo
processes inside the remnant neutron star may not be necessary
for producing the ultra-intense surface magnetic field. Magnetic
field strengths in the interior of such magnetars thus produced are
expected to be even stronger and are gravitationally buried and
confined by the nuclear-density matter.

If the surface magnetic field strength of a massive progenitor
happens to be even higher, possibly up to ∼3 × 104 G or more, a
nascent compact magnetar may then possess an ultra-intense sur-
face magnetic field up to ∼1015–3 × 1016 G or higher. Such strong
magnetic fields can give rise to various stellar activities and mag-
netic reconnection can release stored magnetic energy sporadically
and violently (e.g. Low & Lou 1990). For example, if one approx-
imates the magnetospheres of SGRs, AXPs and radio pulsars as in
gross force-free equilibria (i.e. electric currents parallel to magnetic
fields), then the magnetic energies retained in such magnetospheric
systems are higher than the corresponding potential field configura-
tions with the same footpoint magnetic field at the stellar surface. A
loss of equilibrium most likely triggered by magnetic reconnections
may then lead to outbursts of available magnetic energies. In the
solar and stellar contexts, such processes correspond to solar/stellar
flare activities and coronal mass ejections. For compact stellar
object like neutron stars, this type of dramatic magnetic energy
releases might fuel ‘magnetic fireballs’ which produce short-hard
gamma-ray bursts, such as those reported giant flares (e.g. Hurley
et al. 2005) as well as very recent outbursts of SGR J1550−5418 and
SGR 1627−41. After giant flares, a neutron star may still recover
surface magnetic fields of the order of ∼1014–1015 G manifested as
either an AXP or a SGR.

For an intense magnetic field buried inside a magnetar, there
is yet another possible source of activities. The magnetic Lorentz
force may break the crust of a neutron star into pieces to various
levels. Coupled with the magnetar spin, a broken crust can give
rise to various activities. For examples, chunks of crust may pile up
around the equatorial bulge and rearrange themselves to generate
stellar seismic activities in a random manner; interior magnetic flux
ropes may burst into the magnetar magnetosphere randomly at weak
points of a crust; if the crust is more or less destroyed by the intense
Lorentz force, then footpoints of magnetic field lines can be moved
around by convective motions and possible differential rotations of
a magnetar; the manoeuvre of magnetic footpoints over the surface
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of a magnetar leads to variable configurations of the magnetosphere
and thus produces magnetic activities including analogues of ‘flares’
and ‘coronal mass ejections’ mentioned earlier.

Regarding observed magnetar-like X-ray emissions from a
rotation-powered pulsar PSR J1846−0258 inside supernova rem-
nant Kes75 (e.g. Archibald et al. 2008; Gavriil et al. 2008), our
model can accommodate this pulsar resulting from a magnetized
massive progenitor yet with a lower surface magnetic field strength.
Such magnetar-like activities are physically associated more with
large magnetospheric field strengths. With the current observational
evidence, it appears not necessary to postulate that magnetars evolve
from fast spinning radio pulsars.

In our ‘ball of thread’ scenario for a random magnetic field
within a massive progenitor star, the large-scale mean of such a
random magnetic field is idealized as dominantly transverse with
a fairly weak radial component. By the approximation of quasi-
spherical symmetry, low-amplitude small-scale deviations, oscilla-
tions or fluctuations are randomly distributed about the mean flow
profile and are expected to co-evolve with large-scale MHD pro-
files (e.g. Lou & Bai, in preparation; Cao & Lou 2009). During the
processes of the gravitational core collapse and the MHD rebound
shock breakout, a remnant neutron star forms with high nuclear
density and ultra-intense magnetic field, while a major portion of
the interior and envelope of the massive progenitor star is driven
out into interstellar space by the rebound shock with entrained
strong magnetic field. Our semi-analytic model describes a large-
scale self-similar MHD evolution for the supernova explosion of a
magnetized massive progenitor. Along with this large-scale evolu-
tion, the central magnetar and the thrown-out stellar materials may
certainly follow their own courses of adjustment or rearrangement
(e.g. Lou 1994). For example, considerable radial components of
magnetic field should emerge in a random turbulent manner. In
fact, magnetars are expected to possess magnetospheres with vari-
ous possible configurations (see Low & Lou 1990 for construction
of force-free stellar magnetic field configurations). By numerical
simulations with ‘fossil fields’, Braithwaite & Spruit (2004) illus-
trated examples of processes for magnetic field rearrangement to
occur within a few Alfvén time-scales. The emergent stable struc-
ture of magnetic field for magnetic Ap stars appears always of
‘offset dipole’ type (with complex and twisted magnetic field con-
figurations inside), consistent with observations. By this analogy,
we presume that such magnetic field rearrangement processes could
take place very rapidly during the formation of intensely magne-
tized neutron stars, whose Alfvén time-scale is of the order of
∼0.1 s. Eventually, a magnetar can possess a variety of magnetic
field configurations (e.g. Low & Lou 1990).

Magnetars observed so far appear to be slow rotators, while mas-
sive stars are in general rapid rotators with typical equatorial speeds
of ∼200 km s−1 (e.g. Fukuda 1982). Therefore, significant angular
momentum transfer may have taken place in the stellar evolution of
magnetic massive stars. Spruit (1999, 2002) has shown that mag-
netic fields can be created in stably stratified layers inside a differen-
tially rotating star. Heger et al. (2005) gave detailed rotating stellar
evolution calculations for stars in the mass range of ∼12–35 M�
incorporating the dynamo-powered magnetic field. In general, it is
found that magnetic breaking decreases the final spin rate of the
collapsing iron core by a factor of ∼30–50 when compared with
the non-magnetic case. The ‘fossil’ (or primordial) magnetic fields
may have similar dynamic effects regarding the re-distribution of
angular momentum inside a massive star. In particular, for magnetar
formation, high magnetic fields may lead to stronger core–envelope
coupling during the hydrogen and helium burning phase of the SN

progenitor, and the collapsing iron core and the compact supernova
remnant are expected to be even slower rotators. This is in accor-
dance with the population of slowly rotating magnetars observed.

In our model at this stage of development, the stellar rotation
is not included to simplify the mathematical treatment. Conceptu-
ally, it could be possible to design an axisymmetric MHD problem
to accommodate stellar differential rotation in order to explore the
re-distribution of angular momentum during the processes of grav-
itational core collapse, MHD rebound shock as well as collimated
MHD outflows from polar regions with shocks (e.g. shocked MHD
jets). The overall magnetic field configuration could be predomi-
nantly toroidal but a relatively weak radial magnetic field compo-
nent is necessary to exert an effective magnetic torque to break or
slow down the stellar core rotation. As the core materials rapidly
collapse towards the centre under gravity, the mechanical angular
momentum is transferred outwards in an outgoing envelope with
shock. Along the rotation axis, collimated outflows or jets may
emerge to break through the polar stellar envelope and part of the
mechanical angular momentum is carried outwards by rotating po-
lar collimated outflows. For a semi-analytic self-similar approach
to this time-dependent problem, one might be able to perform a
self-similar transformation combining time t with two spatial co-
ordinates, say r and θ . It might be possible to derive asymptotic
solutions in the regime of slow rotators for this two-dimensional
magnetar formation problem. One also expects the existence of sev-
eral MHD singular surfaces in deriving flow solutions. Physically,
such a scheme if tractable semi-analytically and/or numerically can
be applied to a wide range of gravitational collapses of rotating
systems, including magnetars, pulsars, magnetic white dwarfs, pro-
tostars, planets and so forth.

In addition to the quasi-magnetostatic asymptotic solutions
adopted and exemplified in this paper, it may be possible that a
magnetized massive progenitor star evolves towards the strong-
field asymptotic solutions ultimately (Yu et al. 2006; Wang & Lou
2007, 2008), involving a material fallback process towards the cen-
tral remnant neutron star. Under this situation, the enclosed mass
within a certain radius keeps increasing until the mass of the neutron
star exceeds the TOV limit. Such a MHD fallback process offers a
possible means to form stellar mass black holes as compact rem-
nants in supernova and hypernova explosions. We emphasize that
such a mechanism requires a strong magnetic field inside a progen-
itor and the magnetic force becomes dominant during the fallback
process.
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A P P E N D I X A : M H D S H O C K C O N D I T I O N S

In the shock comoving framework of reference, the MHD shock
jump conditions in terms of the reduced self-similar variables are

α1(nx1 − v1) = λα2(nx2 − v2), (A1)
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1 x
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+ (nx2 − v2)2 + 2hα2x
2
2

]
(A3)

(Wang & Lou 2008). Once we have (x2, α2, v2) on the imme-
diate downstream side of a shock front, we can obtain (x1, α1,
v1) explicitly for the immediate upstream side using MHD shock
relations (A1)–(A3) (Wang & Lou 2008; Lou & Hu 2009) or vice
versa. In the case of q = 2/3, there are only two independent rela-
tions among equations (A1)–(A3), and we could choose parameter
λ > 0 arbitrarily. Hence, we can set k1 = k2 or λ = 1 in this situation.
This treatment will not alter the relations of the resulting dimen-
sional physical variables. In general, the outgoing travel speed of a
rebound shock varies with time t for n 	= 1: the shock accelerates for
n > 1, the shock speed remains constant for n = 1 and the shock
decelerates for n < 1.
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