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Abstract

A terrestrial planet’s rotation period is one of the key parameters that determines its climate and habitability.
Current methods for detecting the rotation period of exoplanets are not suitable for terrestrial exoplanets. Here we
demonstrate that, under certain conditions, the rotation period of an Earth-like exoplanet will be detectable using
direct-imaging techniques. We use a global climate model that includes clouds to simulate reflected starlight from
an Earth-like exoplanet and explore how different parameters (e.g., orbital geometry, wavelength, time resolution)
influence the detectability of the planet’s rotation period. We show that the rotation period of an Earth-like
exoplanet is detectable using visible-wavelength channels with time-series monitoring at a signal-to-noise ratio
(S/N)>20 with ∼5–15 rotation periods of data, while the rotation period of a planet with full ocean coverage is
unlikely to be detectable. To better detect the rotation period, one needs to plan the observation so that each
individual integration would yield a S/N>10, while keeping the integration time shorter than 1/6 to 1/4 of the
rotation period of the planet. Our results provide important guidance for rotation period detection of Earth-like
exoplanets in reflected light using future space telescopes.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet detection methods (489); Direct
imaging (387)

1. Introduction

Since the rotation rate of a planet determines the magnitude of
its Coriolis force, and therefore strongly influences its atmospheric
and oceanic circulation, it is one of the key parameters that
determines the climate of a planet (Showman et al. 2013; Forget
& Leconte 2014; Kaspi & Showman 2015; Komacek &
Abbot 2019). Moreover, as a result of cloud feedbacks, previous
simulations suggest that a slowly rotating Earth-like planet could
maintain a habitable climate at nearly twice the incident stellar
flux as Earth, which implies a strong dependence of the inner edge
of the habitable zone on planetary rotation rate (Yang et al. 2014;
Way et al. 2016). Therefore, detecting the rotation period of an
exoplanet is crucial for evaluating its habitability. Furthermore, the
rotation period of an exoplanet will evolve toward the orbital
period due to tidal forces exerted by the star it orbits, especially for
potentially habitable exoplanets in close-in orbits around low-
mass stars (Kasting et al. 1993). Barnes (2017) calculated that
approximately half of the habitable Kepler planets and most of the
habitable Transiting Exoplanet Survey Satellite planets should be
tidally locked within 1 Gyr. Detecting the rotation period of an
exoplanet, and determining whether it is tidally locked, will
therefore put constraints on the age of an exoplanetary system.

A number of methods are currently being used to detect the
rotation period of exoplanets. The first method is to use the
rotational broadening and Doppler shift of lines in the planetary
atmosphere to determine the rotational velocity of the exoplanet.
For example, Snellen et al. (2014) used the CO spectrum to
constrain the rotational velocity of the gas giant β Pictoris b and
Brogi et al. (2016) used the CO and H2O spectra to constrain the
rotational velocity of HD 189733b. The second method is to

infer the rotation period of an exoplanet from the magnetic-field-
induced radio emission from the extrasolar system. For example,
Hess & Zarka (2011)modeled the dynamic radio spectra from an
exoplanet and its parent star to show that physical information
about the system, including the magnetic field and the rotation
period of the exoplanet, can be obtained from radio observations.
These two methods are optimal for hot Jupiters and directly

imaged wide-separation gas giants, which are likely to have high
rotation rates, strong absorption of certain gases, or strong
magnetic fields. However, these methods are not suitable for
detecting the rotation period of Earth-like exoplanets. In the
foreseeable future, the most promising strategy for detecting the
rotation period of an Earth-like exoplanet is to analyze the single-
pixel observations of reflected starlight from the exoplanet, which
can be used to retrieve surface features (Aizawa et al. 2020; Fan
et al. 2019; Aizawa et al. 2020; Gu et al. 2021). Although the
reflected starlight of an Earth-like exoplanet will be extremely
faint compared to its star, high-contrast imaging capabilities such
as a coronagraph or starshade (an external occulter in a telescope
designed to suppress the light from the star; Cash 2006;
Vanderbei et al. 2007) will allow us to directly image Earth-
like exoplanets. For example, in an overview of the noise budget
of starshade-assisted exoplanet imaging, Hu et al. (2021) showed
that for some nearby stars (for example, tau Ceti and epsilon Indi
A), a signal-to-noise ratio of 20 in a narrow spectral band can be
achieved for an Earth-size planet in the habitable zone of its host
star with an integration time of several hours using a HabEx-like
telescope. The integration time would be shorter for a wider
bandpass. It should therefore be feasible to detect the rotation
period of Earth-like exoplanets in the near future.
In this study, we explore the detectability of the rotation

period of an Earth-like exoplanet. We use the exoplanetary
community atmospheric model (ExoCAM) global climate
model (GCM) to simulate the atmospheric dynamics and
radiative transfer for an Earth-like exoplanet with different
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rotation periods. Using the simulation results, we mimic future
observations of an exoplanet and study which parameters of the
exoplanet determine the detectability of its rotation period. We
also explore the orbital geometry, wavelength, time duration,
and frequency of simulated observations. We describe the
ExoCAM model setup in Section 2. In Section 3, we show how
we mimic exoplanet observations and obtain the rotation period
from them. We investigate the influence of different parameters
on the detectability of the rotation period in Section 4. We
present a summary and discussion in Section 5.

2. ExoCAM GCM

We use the GCM ExoCAM (Wolf & Toon 2015; Kopparapu
et al. 2016, 2017; Wolf et al. 2017; Wolf 2017) to simulate the
atmosphere of Earth-like exoplanets. ExoCAM is modified
from the Community Atmosphere Model version 4. It uses
correlated-k radiative transfer with updated spectral coefficients

using the HITRAN 2012 database and a novel treatment of
water vapor continuum absorption. Crucially for this project,
ExoCAM provides radiative output in 68 wavelength bins.
ExoCAM calculates variable clouds as functions of time and
space. We use the Rasch & Kristjánsson (1998) subgrid
parameterization and the Zhang & McFarlane (1995) convec-
tion. ExoCAM has previously been used for a wide variety of
studies of the atmospheric circulation and climate of terrestrial
exoplanets, including cloud behavior (Wolf & Toon 2015;
Kopparapu et al. 2016, 2017; Wolf et al. 2017; Wolf 2017;
Haqq-Misra et al. 2018; Komacek & Abbot 2019; Yang et al.
2019a; May et al. 2021).
Since there is nothing special about Earth’s rotation period

(one day), we conduct two GCM experiments which are
equivalent except that they have different rotation periods (one
day and two days). Each simulation has an Earth-like ocean-land
distribution, planetary radius, surface gravity, obliquity (23.5°),
orbital eccentricity (0.0167), and orbital period. The atmosphere

Figure 1. Two divergent sets of orbital geometries used in this study. On the top of each panel, the small diagram shows how we rotate the orbit to obtain different
orbital geometries. The diagrams below show the correspondence between the angles and the orbital geometries. (a) The exoplanet is in an azimuthal-rotated edge-on
orbit. (b) The exoplanet is in a polar-rotated orbit. The markers next to each diagram represent the orientation of the sunlit disk in the view of the observer.

2

The Astronomical Journal, 163:27 (9pp), 2022 January Li et al.



is composed purely of nitrogen gas, N2. The irradiation is
equivalent to that of Earth (1360 W/m2) and the incident stellar
spectrum is the same as the Sun’s. The ocean is simulated with a
50 m deep slab-ocean model with thermodynamic sea ice (Bitz
et al. 2012). We use a horizontal grid of 4°× 5° with 40 vertical
layers (Komacek & Abbot 2019). The experiments have a typical
duration of approximately 15 yr with a time step of 15 minutes.
We run the simulations until the annual and global-mean
temperature converges, then we output two hourly-averaged
radiation data over a range of wavenumbers (1 cm−1

–42087
cm−1). In what follows, we simulate reflected starlight observa-
tions with the output from these two GCM experiments.

3. Deriving the Rotation Period from Reflected Light Time
Series

We calculate the disk-averaged reflected stellar flux of the
simulated exoplanet to mimic a real observation. The ExoCAM
simulation provides us with the reflected stellar flux as a
function of wavelength, latitude, and longitude. To calculate a
time series of the disk-averaged flux, we first need to pick an
orbital geometry. It should be noted that any orbital geometry is
possible for an unknown exoplanet. Therefore, we use two
divergent sets of orbital geometries in our analysis (Figure 1).

In the first set of orbital geometries, the orbit of the exoplanet is
edge-on in the perspective of the observer (hereafter referred as
azimuthal-rotated edge-on orbit). The transit configuration is
defined as 0°, while the secondary eclipse configuration is
defined as 180° (see Figure 1)(a)). In the second set of orbital
geometries (hereafter referred to as polar-rotated orbit), the
orbit of the exoplanet is polarly rotated starting from a face-on
orbit. The face-on orbit with the northern/southern hemisphere
exposed to the observer is defined as 0°/180°, while the transit
and secondary eclipse configurations are defined as 90° and
270°, respectively (see Figure 1(b)). We note that azimuthally
and polarly rotating an orbit will generate all possible orbital
geometries. It should also be noted that we pick the orbital
geometry at the start of the time series. Because of the
revolution of the planet, the immediate orbital geometry will
change with time. Once an orbital geometry and a specific
wavelength range are chosen, a time series of the disk-averaged
reflected solar flux can be calculated from the simulation
results. The original resolution of the time series is 2 hr, which
is the same as the time resolution of the model output. By
averaging nearby data points, the resolution of the time series
can be arbitrarily decreased. We also add simulated Gaussian
observational errors to the time series in order to mimic real
observations.

Figure 2. How we derive the rotation period from a time series. (a) A simulated time series of reflected starlight for the 1 day rotation period experiment. (b) The
detrended time series. (c) Fourier transform of the detrended time series. (d) Signal-to-noise ratio as a function of period. The red line indicates the signal-to-noise
threshold for 99% confidence.
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Figure 2(a) presents an example of a time series of simulated
reflected starlight created from model output. In this case, we
use the one-Earth-day rotation period simulation output in the
wavelength range between 540 nm and 550 nm and the length
of the time series is 25 days. The orbital geometry at t= 0 is set
at 220° of the azimuthal-rotated edge-on orbit and the time
resolution is 2 hr. The standard deviation of the observational
error is set to be 5% of the disk-averaged flux, which
approximately corresponds to a signal-to-noise ratio of 20 for
the telescope. We also show the detrended time series, the fast
Fourier transform (FFT) of the detrended time series, and the
signal-to-noise ratio in Figure 2. The signal-to-noise ratio,
which is the power density of the signal divided by the variance
of the normally distributed observational error (Scargle 1982),
is calculated from the time series (shown in Figure 2(d)). To
report a signal with high confidence (low false alarm
probability), the signal-to-noise ratio must exceed a certain
threshold. In Figure 2(d), the red line represents the 99%
confidence signal-to-noise ratio threshold calculated according
to Scargle (1982). It should be noted that this threshold is a
function of the length of the time series. Based on Figure 2(d),
there are two signals detected with >99% confidence (<1%
false alarm probability). The periods of the highest and the
second highest peaks are 1.0 day and 0.5 day, respectively. The
1.0 day signal corresponds to the rotation period while the 0.5
day signal corresponds to possible periodic patterns associated
with land-ocean contrast or cloud distribution. It is possible for
the highest peak to occur at 0.5 day, 0.33 day or even 0.25 day
rather than 1.0 day. Therefore, we propose the following
algorithm to obtain the rotation period from a time series:

1. Pick the highest peak in the FFT result, then check if the
signal-to-noise ratio of this peak is above the 99%
confidence threshold.

2. If not, then we consider that the rotation period cannot be
detected from this time series. If yes, then check if there is
another peak that is above the signal-to-noise threshold
and has the period that is an integral multiple of the
period of the highest peak.

3. If not, the rotation period we detect is the period of the
highest peak. If yes, the rotation period we detect is this
integral multiple of the period of the highest peak.

4. Finally, check if the rotation period we detect is the actual
rotation period of the simulated exoplanet. If yes, we
consider that the rotation period can be detected from this
time series.

Figure 3 contains a flowchart illustrating our algorithm.
With steps (1)–(4), we can determine whether the rotation
period of the exoplanet can be detected from a simulated time
series. When we alter the parameters of the simulated
observation (e.g., orbital geometry, wavelength range, etc.),
the time series and the detectability of the rotation period
change. In the next section, we will explore how different
parameters influence the detectability of the rotation period of
an Earth-like exoplanet.

4. Sensitivity of the Detectability of the Rotation Period to
Parameters

To understand the conditions under which the rotation period
of an Earth-like exoplanet is likely to be detectable, here we
consider seven important factors that affect the observations.

Figure 3. The flowchart of the algorithm that is used to determine whether the rotation period of the exoplanet can be detected from a simulated time series.
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4.1. Length of Observation

We find that it is generally easier to detect the rotation period
with longer lengths of observation. Figure 4 shows a time series
that is obtained under the same condition as the time series in
Figure 2 except that the length of this time series is only 4 days.
From Figure 4(d), we clearly see that this time series does not
meet our criteria for rotation period detection. Therefore, under
a given condition, the minimum length of observation needed
to detect the real rotation period is a key parameter that
measures the detectability of the rotation period.

4.2. Rotation Period

Since the detectability of the rotation period depends on how
many periods are contained in the time series, the minimum
length of observation needed to detect the rotation period should
be measured in periods instead of days. In Section 3, we used
one per 2 hr, one per 4 hr, etc., to represent the time resolution of
the time series. Since hour and day are Earth-specific units, a
more sophisticated way to describe the time resolution is the
number of data points in one period. In other words, one per 2 hr
for a 1 day rotation period and one per 4 hr for a 2 day rotation
period data set are equivalent, each corresponding to 12 data
points per period. Ideally the minimum observation length

needed to detect the rotation period should be a constant number
of rotational periods. However, our analysis shows that some-
times the minimum length of observation (in rotational periods)
needed for the 1 day rotation period data set and the minimum
length of observation needed for the 2 day rotation period data
set are not always equal due to the differing climates. In what
follows we will regard the minimum length of observation
needed to detect the rotation period under a given condition as
the larger minimum length of observation obtained from the two
data sets.

4.3. Wavelength

The detectability of the rotation period may vary with the
wavelength used to observe the exoplanet. Here we fix the
orbital geometry at 180° of the azimuthal-rotated edge-on orbit,
the time resolution at 12 data points per period and the
observational error at 5%. We then calculate the minimum
length of observation needed to detect the rotation period for
different wavelength ranges (Figure 5.) If the rotation period
cannot be obtained from an observational length of 45 rotation
periods, we consider the rotation period to not be detectable
under this condition. In Figure 5, we can see that the minimum
length of observation needed in the visible channels (500 to

Figure 4. Same as Figure 2, except the length of the time series is 4 days. The 99% confidence threshold in panel (d) is lower than the threshold in Figure 2(d) due to
the shorter time series.
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700 nm) is less than 10 periods, much shorter than the minimum
length of observation needed for the ultraviolet and near-infrared
channels. This is mainly because the reflectance of land, ocean,
and cloud are more diverse in the visible channels than in other
channels (Xu et al. 2015; Kokaly et al. 2017).

4.4. Orbital Geometries

If the exoplanet is near secondary eclipse, the observer can
see almost the entire sunlit disk (as long as the star is not
blocking the planet), which will provide a smooth variation in
reflected light. If the exoplanet is near transit, the observer can
see very little reflected starlight from the exoplanet, which will
make the variation in reflected light rather random. Therefore,
the orbital geometry clearly influences the detectability of the
rotation period. In the following, we fix the time resolution at
12 data points per period and the observational error at 5%,
then find the minimum length of observation needed to detect
the rotation period as a function of wavelength and orbital
geometry (shown in Figure 6). For the near-infrared channels
below 1.3 μm, in a range of ∼100° in both azimuthal and polar
angle around the secondary eclipse, the rotation period is
detectable with ∼20–30 periods of observation. In the visible
channels, the rotation period is detectable with less than 15
periods of observation in a much larger geometry range. As
expected, the rotation period of the exoplanet is only difficult to
detect near transit. For the ultraviolet channels with wave-
lengths above 285 nm, the rotation period is detectable near the
secondary eclipse with more than 25 periods of observation.
The rotation period is undetectable at wavelengths less than
285 nm. In Figure 6(a), we can see that the most detectable/
undetectable orbital geometries are not exactly at secondary
eclipse/transit. That is because the orbital geometry is picked at
t= 0 and will change due to the revolution of the planet.

4.5. Time Resolution

To evaluate the influence of time resolution on the detectability
of the rotation period, we repeat the analysis from Section 4.4
with coarser time resolutions of six data points per period

(Figure 7(a)), four data points per period (Figure 7(b)), and three
data points per period (Figure 7(c)). With six data points per
period, the rotation period is still detectable in a large geometry
range in visible channels, but the minimum length of observation
needed to detect the rotation period becomes about two times
longer than the higher resolution scenario (Figure 7(a)). In
contrast, the rotation period becomes undetectable at other
wavelengths. If the time resolution is decreased to three data
points per period, the rotation period is only detectable near
transit (Figure 7(c)). This is consistent with Jiang et al. (2018),
who showed that when the time resolution is lower than two data
points per period, the probability of detecting the rotation period
drops dramatically regardless the total observation length.

4.6. Observational Error

In the previous analysis, we fixed the standard deviation of
the observational error added to the time series at 5% of the

Figure 5. An example of the minimum length of observation needed to detect
the rotation period as a function of wavelength. We combine 1 and 2 day period
data here (see Section 4.2) and use a 99% confidence threshold. The orbital
geometry is 180° of the azimuthal-rotated edge-on orbit, the time resolution 12
data points per period, and the observational error is 5%.

Figure 6. The minimum length of observation needed to detect the rotation
period as functions of the wavelength and orbital geometry. We combine 1 and
2 day period data here (see Section 4.2) and use a 99% confidence threshold.
The time resolution is 12 data points per period. The observational error is 5%.
(a) Azimuthal-rotated edge-on orbital geometries (see Figure 1). (b) Polar-
rotated orbital geometries. The color white indicates that the rotation period is
not detectable.
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disk-averaged flux, which approximately corresponds to a
signal-to-noise ratio (S/N) of 20 for each integration. To
evaluate the influence of the S/N on the detectability of the
rotation period, we recreate our analysis from Section 4.4 but

change the S/N to 40 and 10 (Figure 8). When the S/N is 40,
the detectability is significantly enhanced in all channels
(Figure 8(a)). In the visible and near-infrared channels, the
minimum length of observation needed to detect the rotation
period is less than 10 periods for most of the orbital geometries.
Moreover, even the ultraviolet channels at wavelengths below
285 nm become detectable. On the contrary, when the S/N is
10 (Figure 8(b)), the rotation period is undetectable for most of
the ultraviolet and near-infrared channels. Although the
rotation period is still detectable for the visible channels, it
requires more than 20–25 periods of observation.

4.7. Land Fraction

The fractions of land and ocean on Earth’s northern
hemisphere are comparable, whereas on Earth’s southern
hemisphere the ocean covers more than 80% of the surface.
Therefore, the southern hemisphere of the Earth is more like
an aqua planet (i.e., a planet with full ocean coverage). We
can exploit this asymmetry to investigate how land fraction
influences the detectability of the rotation period. For
example, when the observer focuses on the northern hemi-
sphere (around 0° of the second set of orbital geometries), the

Figure 7. (a) Same as Figure 6(a), except that the time resolution is six data
points per period. (b) Same as Figure 6(a), except that the time resolution is
four data points per period. (c) Same as Figure 6(a), except that the time
resolution is three data points per period.

Figure 8. (a) Same as Figure 6(a), except that the S/N is 40. (b) Same as
Figure 6(a), except that the S/N is 10.
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rotation period is detectable for most of the channels
(Figure 6(b)). In contrast, when the observer focuses on the
southern hemisphere (around 180° of the second set of orbital
geometries), the rotation period becomes undetectable. This
result implies that the rotation period of an exoplanet with no
land is unlikely to be detected using the observational
technique outlined here. In other words, an exoplanet whose
rotation period can be detected is likely to have a mix of
continents and ocean, which may be used to infer information
about the planet’s geophysical and geochemical context that
would otherwise be hidden.

5. Conclusion and Discussion

In this study, we simulate observations of ExoCAM output, a
GCM that includes clouds, to evaluate the detectability of a
terrestrial exoplanet’s rotation period through an FFT analysis
of reflected starlight. Our work shows that to better detect the
rotation period, one needs to plan the observation so that each
individual integration would yield a S/N> 10, while keeping
the integration time shorter than 1/6–1/4 of the rotation period
of the planet. The best wavelength range to carry out this
observation will be between 500 and 700 nm, and in this
wavelength range, the rotation period may be obtained with an
observation campaign that lasts for ∼10 rotation periods. Using
Earth as an analog, the quantities above correspond to repeating
the integration every <4–6 hr for ∼10 days. There are trade-
offs between the integration time (and thus the S/N per
integration) and the total duration of the observation. The
optimal timing of this type of observation will be when the
planet moves into an orbital phase where much of the planetary
surface is illuminated by starlight.

When dealing with a real observation, since we would not
know the rotation period, one should follow the steps in
Section 3 to get a preliminary rotation period from the observed
time series. With the preliminary rotation period, the observer
will be able to convert the time resolution to units of number
per period and the length of the time series to a multiple of the
rotation periods. By comparing the parameters of the observa-
tion (time resolution, S/N, length of observation, etc.) to the
parameter space explored in Section 4, one can tell whether this
preliminary rotation period is likely to be the true rotation
period or not.

Future space telescopes being planned may provide the
required conditions to detect the rotation periods of terrestrial
planets in the habitable zone of some nearby stars. For
example, a HabEx-like telescope would achieve an S/N=
20 per 5 nm spectral channel in 500–700 nm for an Earth-like
planet in the habitable zone of the nearest stars (distance <4 pc,
e.g., tau Ceti, epsilon Indi A) in ∼10 hr (Hu et al. 2021). This
translates to an integration time of ∼6 hr per ∼10 nm spectral
channel, corresponding to the simulation shown in this paper.
The rotation period would thus be detectable if Earth analogs
are found in these systems and ∼10 days of the mission time
are dedicated to the campaign. Given the importance of the
rotation period (it is one of the basic planetary parameters aside
from mass and radius) and possible science that can be
achieved at the same time (e.g., surface composition mapping;
Cowan et al. 2009; Fan et al. 2019), a ∼10 day campaign
may be favorable. The requirement will be less stringent for
planets larger than Earth or closer to their host star, for which
the endeavor of detecting the planetary rotation period may
be extended to stars further away. A larger space telescope

(e.g., the LUVOIR mission concept) would enable rotation
period detection in more systems.
The detectability of rotation period is mainly due to the

differences between the reflectance of ocean, land, and
persistent cloud. In general, clouds block land and ocean from
the observer, making the rotation period more difficult to
detect. In a test run, we removed the cloud from the simulated
planet and found that the minimum length of observation
needed to detect the rotation period was shorter than it was for
the cloud-covered planet. While the impact of clouds is
essential, the modeling of clouds is highly uncertain (Yang
et al. 2019b). Future work exploring alternative cloud schemes
is needed. For Earth-like exoplanets, since the planet is not
entirely covered by cloud, its surface features can be seen by
the observer so that the rotation period is detectable. For
exoplanets with more substantial cloud coverage than Earth,
the rotation period may become undetectable. For example, Lee
et al. (2020) found that a periodogram analysis of the light
curve of Venus reveals two strong signals at 3.7 and 4.6 days,
which correspond to the rotation of the atmosphere rather than
the rotation of Venus itself.
In Section 4.7, we proposed that the rotation period of an

aqua exoplanet is likely undetectable. However, this is based
on the precondition that we only have photometric observations
of the exoplanet. Ocean glint, which has been shown to
facilitate surface mapping of potential habitable exoplanets
(Lustig-Yaeger et al. 2018), is highly polarized. Kopparla et al.
(2018) model the polarization signal of the TRAPPIST-1
system and show that the polarization signal from an ocean-
covered exoplanet is stronger and easier to detect than the
intensity signal. Since the polarization observation of an aqua
exoplanet is dependent on the surface roughness of the ocean, a
nonuniform surface roughness distribution of the aqua
exoplanet could cause diurnal variation in a polarization
observation. If a direct-imaged polarization observation of an
exoplanet were available, the rotation period of an aqua
exoplanet might still be detectable. In concert with photometric
observations, a polarization observation may also improve the
detectability of the rotation period of Earth-like exoplanets.
In this paper, we have studied fast-rotating exoplanets,

whose rotation period is much smaller than its orbital period.
For Venus-like, slowly-rotating exoplanets whose rotation
period is comparable to their orbital period, the variation of
the reflected starlight caused by its rotation would be coupled
with the variation caused by its revolution so that the signal of
the rotation period may be hard to detect. Further studies are
required to address this problem.
In summary, we find that it will be possible to detect the

rotation period of a terrestrial exoplanet using direct imaging if
the planet is observed in favorable conditions. The detection of
the rotation period of Earth-like exoplanets will help us identify
habitable exoplanets and provide us with information on the
dynamical evolution of exoplanetary systems.
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