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ABSTRACT. Starshade is one of the technologies that will enable the observation and charac-
terization of small planets around nearby stars through direct imaging. Extensive
models have been developed to describe a starshade’s optical performance and
noise budget in exoplanet imaging. The Starshade Exoplanet Data Challenge was
designed to validate this noise budget and evaluate the capabilities of image-
processing techniques by inviting community participating teams to analyze
>1000 simulated images of hypothetical exoplanetary systems observed through
a starshade. Because the starshade would suppress the starlight so well, the dom-
inant noise source remaining in the images becomes the exozodiacal disks and their
structures. We summarize the techniques used by the participating teams and com-
pare their findings with the truth. With an independent component analysis to remove
the background, ∼70% of the inner planets (close to the inner working angle) have
been detected along with ∼30% of the outer planets. Planet detection becomes
more difficult in the cases of higher disk inclination as the false negative and false
positive counts increase. Interestingly, we found little difference in the planet detec-
tion rate between 10−10 and 10−9 instrument contrast, confirming that the dominant
limitations are from the astrophysical background and not the performance of the
starshade. A non-parametric background calibration scheme, such as the indepen-
dent component analysis reported here, results in a mean residual of 10% the back-
ground brightness. This background estimation error leads to substantial false
positives and negatives and systematic bias in the planet flux estimation and should
be included in the estimation of the planet detection signal-to-noise ratio for imaging
using a starshade and also a coronagraph that delivers exozodi-limited imaging.
These results corroborate the starshade noise budget and provide new insight into
background calibration that will be useful for anticipating the science capabilities of
future high-contrast imaging space missions.
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1 Introduction
The characterization of atmospheres, climate, and potential habitability of extrasolar planets
(exoplanets) with spectroscopy is at the forefront of our endeavor to explore the Universe.
Although short-period planets may be within the reach of the James Webb Space Telescope for
atmospheric studies through the transit technique,1–4 it would be challenging to characterize
long-period and small planets with a secondary atmosphere (i.e., temperate and rocky planets
that have N2 or CO2 atmospheres or potentially habitable planets that may resemble Earth) using
the transit method.5 Instead, high-contrast imaging is a recognized avenue to enable the spectro-
scopic studies of long-period (and thus temperate) and rocky exoplanets of nearby stars. The
level of instrument contrast required to image an Earth-like planet directly around a Sun-like
star (∼10−10) has been achieved in laboratories using a starshade6 and should be within the reach
of a coronagraph.7,8

To realize the long-term vision to image and characterize Earth-like planets of nearby stars,
NASA chartered the Starshade Technology Development Activity to TRL5 (S5)9 to systemati-
cally mature the technology and close technology gaps in optical performance, formation flying,
and mechanical precision and stability. S5 spearheaded a Science and Industry Partnership (SIP)
to engage the broader science and technology communities during the activity. As a key outcome
of this partnership, the Starshade Exoplanet Data Challenge (SEDC)10 was designed to study and
validate the flow down of requirements from science capabilities to key performance parameters
based on synthetic images and to prepare the statistical tools useful for the analysis of data that
involve the starshade technology. An Earth-sized planet in the habitable zone of a nearby star
would likely appear to be dimmer than the starlight reflected by the exozodiacal dust11–13 and, in
some cases, the sunlight scattered by the edge of the starshade (referred to as the “solar glint”).11

These noise sources and the planet overlap in the image and are not easily separable, and thus, it
is essential to use synthetic images to test planet detection capabilities.

The objectives of the SEDC are (1) to validate requirements from science to key perfor-
mance parameters, (2) to quantify the accuracy of calibration of solar glint and exozodiacal light,
and (3) to prepare the science community for analyzing starshade exoplanet observations. To
support the SEDC, the S5 team has simulated 2880 images to explore relevant star and planet
parameters, exozodiacal disk density and orientation, as well as the wavelength, instrumental
noise level, and integration time (see Ref. 10 for details). There are 10 star-planet scenarios
in total (see Table 1), and for each of them, three levels of exozodiacal disk density are explored
(1, 3, and 10 zodis, except for τ Ceti that was 3, 10, and 30 zodis), with and without density
clumps in resonance with the embedded planets.15 We assume that the observation is performed
with a 2.4-m space telescope (which determines the point spread function) coupled with a star-
shade at two broad wavelength bands. The inner working angle (IWA) of the starshade is 72 mas
at 415 to 552 nm and 104 mas at 615 to 850 nm. We consider a standard starshade that delivers
10−10 instrument contrast at the IWA and also a degraded starshade that delivers 10−9, resulting in
two sets of images. We provide two images for each setup, where the locations of the planets are
different between the two images. The two images are however not time-stamped and thus cannot
be associated via Keplerian motions. We pick the integration time so that the inner planet would
have an idealized signal-to-noise ratio (S/N) of 5, 10, or 20. The “idealized S/N” is the planet’s S/
N for the perfect background subtraction to the photon-noise limit. All images are simulated
using the Starshade Imaging Simulation Toolkit for Exoplanet Reconnaissance,16 and it is the
first time that the optical effects of the telescope jitter and the formation flying of the starshade
have been included in synthesized images. The images were released on April 7, 2021, and
remain available for download on a dedicated webpage for the SEDC.17 Two funded participating
teams were selected based on proposals, whereas the data challenge is open to the broad com-
munity. The true values have been posted onto the same webpage after receiving the reports from
the two participating teams, and we encourage continuing exploration of the post-processing
techniques using this unique dataset.

Whether background subtraction can be achieved close to the photon-noise limit has a strong
bearing on forecasting the capability of future facilities to detect exoplanets. This is because the
exozodiacal disk, and to a lesser extent solar glint from the starshade, is expected to be bright with
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respect to a small (1 to 4R�) planet in the habitable zone of nearby stars.11 Existing mission yield
studies18–21 and the HabEx and LUVOIR final reports22,23 generally assumed background calibra-
tion to the photon-noise limit. In the context of exoplanet direct imaging using a coronagraph, the
stability of the residual starlight (i.e., the “speckles”) leads to imperfect background calibration and
a potentially irreducible noise floor.8,24 When using a starshade, the leaked starlight and its vari-
ability become generally negligible, especially when the angular separation is greater than the
IWA.11 Recently, Kammerer et al.12 and Currie et al.13 studied the data analysis techniques of the
simulated images using a coronograph and suggested that the background from the exozodiacal
disk can be subtracted to close to the photon-noise limit, depending on the disk density and incli-
nation and whether the disk has resonant structures. Kammerer et al.12 and Currie et al.,13 however,
did not perform “blind” experiments, as the same team simulated the images and analyzed them.
Here, with SEDC, we aim to provide an empirical constraint on the precision of background cal-
ibration based on independent data analyses performed by the participating teams, who had no
knowledge of the astrophysical scenarios when analyzing the images.

Although this study assumes a starshade as the starlight suppression instrument, we expect the
findings to be generally applicable to situations where the residual starlight is negligible in the
overall noise budget. Although the synthesized images in this study fully include the starshade-
specific noise terms—solar glint, reflected Earthshine, micrometeorite damages, and their variability
due to the formation flying motion of the shade—it has become clear a posteriori that none of these
terms is likely dominant in the background when searching for Earth-like planets around nearby
stars. This study can thus be regarded, more broadly, as path-finding for the search for planets in the
exozodi-limited regime regardless of the starlight suppression system. The applicability thus
includes the search for Earth-like exoplanets using a coronagraph on the Habitable Worlds
Observatory, assuming that the coronagraph would have an instrument contrast at the ∼10−10 level
and a speckle field stability that does not become the bottleneck for planet detection.8,25

In this paper, we describe the image analysis methods developed by the two participating
teams (Sec. 2) and compare their findings with the truths (Sec. 3). The planet coordinates and
brightness are unknown to the participating teams. By comparing the reported planet detection/
fluxes to the truths with a heuristic model of background estimation and planet detection, we

Table 1 Simulated planet-star system scenarios in SEDC.10 Except for τ Ceti, the inner planet is
located at an orbital distance that is equivalent (in terms of the total radiation received by the
planet) to 1 AU in the solar system, and the outer planet is located at an orbital distance that
is equivalent to 1.5 AU in the solar system. For τ Ceti, we use the two long-period planets (planets
e and f) suggested by radial-velocity surveys14 as the inner and outer planets and add a hypo-
thetical, 1 − R� planet at the orbital distance that is the geometric mean of the values for inner
and outer planets. Next to the planet radius, in parentheses, we report the average back-
ground/planet flux ratio for the lowest exozodi level considered for the scenario, i.e., 1 zodi for
scenarios 3 to 10 and 3 zodis for scenarios 1 and 2.

ID Star Disk Inc. (deg) Planet 1 Rad. (R�) Planet 2 Rad. (R�) Planet 3 Rad. (R�)

1 τ Ceti 35 1.65 (3.70) 1.0 (57.50) 1.65 (7.55)

2 τ Ceti 35 2.05 (1.86) 1.0 (58.01) 2.05 (3.55)

3 ϵ Indi A 30 1.0 (20.26) 1.0 (35.25) N/A

4 ϵ Indi A 80 1.0 (26.29) 1.0 (49.38) N/A

5 σ Draconis 30 1.6 (2.56) 1.6 (4.20) N/A

6 σ Draconis 80 1.6 (3.40) 1.6 (6.26) N/A

7 σ Draconis 30 2.4 (0.87) 2.4 (1.42) N/A

8 σ Draconis 80 2.4 (1.17) 2.4 (2.14) N/A

9 β CVn 30 2.4 (1.63) 2.4 (2.46) N/A

10 β CVn 80 2.4 (2.22) 2.4 (4.30) N/A
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provide an evaluation of the precision of background estimation achieved by the participating
teams (Sec. 4). Based on this, we discuss the high-level implication in Sec. 5 and conclude with
anticipation of future steps in Sec. 6.

2 Summary of Participating Team Analyses
Here, we provide a synopsis of the approaches taken by the two participating teams. The full
reports provided by the participants are available for download from the SEDC webpage.

2.1 Quartus Engineering
In general, a given simulated image includes relatively faint signals from exoplanets, in addition
to background signals from various noise sources: residual starlight, solar glint and other stray
light sources, exozodiacal light, detector noise, and variability resulting from the starshade’s
motion and telescope jitter. The Quartus Engineering team broke the image analysis problem
into the following sub-problems: background estimation, planet detection, and planet parameter
estimation. The background estimation problem proved to be the most challenging sub-problem,
and the Quartus Engineering team explored both parametric and non-parametric approaches
to address this sub-problem. The parametric approach attempts to explicitly model the back-
grounds, find the best-fit parameters, and then subtract the best-fit background model. The
non-parametric category includes approaches that do not use an explicit astrophysical or other-
wise explicit mathematical model of observed backgrounds but instead attempt to exploit under-
lying differences in the behavior of planet signals versus background signals when considering a
large training set. Specifically, two non-parametric approaches were explored: principal compo-
nent analysis (PCA) and independent component analysis (ICA). These approaches attempt to
find a low-dimensional latent representation of the background signals.

2.1.1 Parametric approach for background estimation

The parametric background model developed consisted of an assumption of an exozodiacal disk,
which is circular, with a 1D function describing a radially symmetric intensity profile. Parameters
for inclination and orientation relative to the imaging system are also included. This can be con-
sidered an “empirical model” in the sense that it is not derived from astrophysical principles but is
intuited from inspection of the image data without any astrophysical reasoning. The model has
the following parameters:

• center position xc, yc (pixels)
• inclination and orientation i, θ (deg)
• 1D function for symmetric intensity roll-off

EQ-TARGET;temp:intralink-;sec2.1.1;114;282fðrÞ ¼ seðar2 þ brþ cÞ;

where r is the radial distance from the center; s is an intensity scale factor; and a, b, and c
are the polynomial coefficients.

This gives a total of eight parameters, denoted by parameter vector p:
p ¼ ½xc; yc; i; θ; s; a; b; c�. Although this model is not derived from astrophysical principles,
it has some physical interpretability in the sense that xc and yc represent the estimated disk center,
whereas i and θ represent disk inclination and orientation, respectively, under the rough
assumption of an infinitely thin disk with perfect radial symmetry.

We find that this approach generally gave reasonable success for removing smooth disk
scenarios. However, it performed worse in those scenarios where the thickness of the disk is
not negligible or the structure of the disk could not be described as smooth.

2.1.2 Non-parametric approach for background estimation

Developing a parametric model with both sufficient fidelity to capture all the background effects
and the right properties for an inverse estimation problem appeared unrealistic given the diversity
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of the disk density and morphology among the simulated images. Therefore, the Quartus
Engineering team switched focus to non-parametric background estimation approaches because
there are a few reasons to believe that the planetary signal can be separated from the background
signal due to underlying differences in their behavior across a large dataset.

• Planets move between multi-epoch observations, whereas smooth, axisymmetric exozodia-
cal backgrounds do not, relative to the star.

• The shape and scale of the disk structure in the image change significantly as a function of
wavelength due to the different size of the point spread function (PSF), whereas planet
positions do not. This is relevant when combining images from the same observation into
a multi-channel image considered as a single sample.

• Disk structures have underlying similarities among different scenarios and dominate the
signal energy.

• Planet signals are point sources with low signal energy, appearing in non-repeatable
positions.

A general idea to exploit these underlying effects to separate planets from the background is
to use dimensionality reduction techniques to find a latent model, which captures backgrounds
but not planets. In essence, a low-dimensional latent model will have a de-noising effect, where
the planet signal can be thought of as a noise signal on top of the broad background structure.

The Quartus Engineering team thus explored PCA and ICA as potential tools for non-
parametric decomposition. In both cases, the image data are collected into a matrix, where the
rows represent samples, and the columns represent variables, which in this case are the image
pixels flattened into a row. ICA could be seen as a generalization of PCA as the linear trans-
formation from the original space to the rotated space in which the data variance is maximized is
not required to be orthonormal. Therefore, the Quartus Engineering team eventually adopted ICA
to perform the background subtraction and planetary signal extraction. An application of ICA to
an SEDC image is shown in Fig. 1.

2.1.3 Planet detection and estimation

Following the background subtraction, the planet detection step starts with the background sub-
tracted image, which is denoted as If (foreground image). In the current workflow If ¼ Io − Ir,
where Io is the observed image, and Ir is the image obtained by using the ICA model to project

Fig. 1 Example of ICA-based background subtraction results for “R05_v2_rez2_snr3_1em10”
scenario from the Quartus Engineering analysis. A 2 × 3 set of subplots is shown where rows 1 and
2 correspond to passbands [425-522] and [615-800] respectively. Columns 1, 2, and 3 of the plot
correspond to the original image, the estimated background, and the residual, respectively.
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onto the latent space, followed by reconstruction back into image space. For example, the
residual images of the ICA processing (e.g., column 3 of Fig. 1) are considered foreground
images for the purpose of planet detection.

The pipeline implemented for the purposes of the data challenge includes the follow-
ing steps:

• Matched filtering. The foreground images are filtered with the appropriate PSF as a
function of wavelength and instrument scenario.

• Local maxima detection. Local maxima detection is performed on the matched filter output
to find regions of the image, which are well matched to the PSF, indicating the possible
presence of a point source.

• Outlier detection. Given the distribution of local maxima intensities found in the previous
step, uni-variate outlier detection is performed to detect which local maxima do not match
the main distribution. The Grubbs test is used to detect local maxima, which are outliers in
terms of matched filter output intensity.

• Keep the N most intense positive outlier detections and consider them as planet detections.

A visualization of detection results for the “R05_v2_rez2_snr3_1em10” scenario is
shown in Fig. 2. It is apparent in Fig. 2 that, although the automated detection is successful
for two planets, imperfect background subtraction is affecting the background level, creating
valleys with no local maxima, potentially leading to false negatives. Also, the threshold used
in the planet detection scheme may lead to the identification of false positives that can be mis-
takenly identified as planets. The choice of the threshold acts as a trade-off between sensitivity
and specificity. The method is, therefore, identifying point-like signals, which include both plan-
ets and certain disk structures. For many images, imperfect background subtraction appears to be
the limiting factor.

Although the detection problem described previously can be summarized as detecting pixels
in the image that correspond to planets, the problem of estimating parameters for each detected
planet can be considered an independent sub-problem. The following approach was taken for
estimating parameters per planet:

Fig. 2 Example planet detection results for the “R05_v2_rez2_snr3_1em10” scenario from the
Quartus Engineering analysis. A 2 × 3 set of subplots is shown where rows 1 and 2 correspond to
passbands [425 to 522] and [615 to 800], respectively. Columns 1 to 3 of the plot correspond to
foreground images with detections, matched filter images with detections and local maxima, and a
histogram of local maxima intensities with outlier/detection threshold.
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• For each planet detection in a given image, select an N × N pixel region of interest (ROI)
centered on the detection. In this case, the selected ROI width was 7 pixels, covering the
PSF in all scenarios.

• Fit a parameterized model of a PSF to the sampled ROI region, using a standard nonlinear
least squares approach.

• Use the center location and magnitude from the best-fit PSF to ultimately compute the
planet location and uncertainty, photon counts, and planetary S/N.

By applying the algorithm to all synthesized images, the Quartus Engineering team was able
to isolate the planetary signal, extract it, and estimate the planetary S/N. Across the 10 star-planet
scenarios, between one and two planets was reported per image in average, as shown in Fig. 3.
Note that the number of reported planets does not significantly vary between the smooth and
resonant exozodiacal disk cases except for scenarios 1, 2, 3, and 5 (i.e., τ Ceti and face-on cases
of ϵ Indi A and σ Draconis), in which more planets are reported for the smooth disk cases.

2.2 Mississippi State University
The Mississippi State University (MSU) team utilized three main techniques to characterize and
then remove light from the image that is not associated with the planet. The techniques employed
include: (1) PSF subtraction, (2) disk modeling, and (3) multi-epoch differential imaging.

PSF subtraction involves subtracting a model or PSF in the absence of any apparent exo-
zodiacal emission to better reveal the faint emission from the planetary point source. Disk mod-
eling is used to create a simple model of any circumstellar emission present in the image for a
single epoch. Once the model is made, it is subtracted from the science image leaving emission
from the planet. Multi-epoch subtraction is the method of using two different epochs where it is
assumed that the planet has changed its position angle while any circumstellar disk emission
remains stable. To characterize what type of analysis is needed for each image, an initial visual
inspection was performed. For those images that appeared to lack any extended emission near the
IWA, the MSU team conducted an additional analysis comparing the profile of an image slice
through the position of the star with a similar slice of the model-centered PSF. If there was a
contribution of some extended emission, this image was slated for additional disk modeling to
better remove this emission prior to analyzing the emission from the planet. A more thorough
determination could also be done by subtracting a PSF from the image and highlighting any
significant residual emission.

Approximately 30 images have been analyzed using these techniques. The locations and
planetary flux ratios of ∼30 planets have been reported in total.

Fig. 3 Mean and standard deviation of the number of planets reported by the Quartus Engineering
team per image for each star-planet scenario. Scenario # corresponds to Table 1. The smooth and
resonant cases are also tallied separately.
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3 Evaluation of Participating Team Analyses

3.1 Quartus Engineering

3.1.1 Estimate of the inclination

The parametric background estimation method adopted by the Quartus Engineering team pro-
vides the planetary system inclination from individual images. The reported inclination values
from the 10−10 instrument contrast cases are shown in Fig. 4. A clear split in two populations is
shown in the data, i.e., high and low disk inclination. The results reported by the Quartus
Engineering team agree with the truth for the low inclination cases, but it is systematically biased
for the high inclination cases. This is likely because the disk is optically thick, and it is difficult to
distinguish between a perfectly edge-on disk (i.e., 90-deg inclination) from a high-inclination
disk, e.g., ≥60 deg. The breakdown in smooth and resonant disk cases shows that it is more
difficult (higher variance) to accurately evaluate the inclination of the system from a single image
if the disk has resonant structures.

3.1.2 True positives, false positives, and false negatives

The Quartus Engineering team reported 1267 planets from the images that assume the instrument
contrast level of 10−10 and 1293 planets from the images that assume the instrument contrast
level of 10−9. To the tally of true positives, false positives, and false negatives, we define a true
positive if a reported planet with its position uncertainty falls inside the simulated planet’s PSF.
Those reported planets that fall outside are instead considered false positives. Then, as we include
two to three planets in each image (Table 1), if not all planets in the image are detected, the
missing planets are counted as false negatives. In Fig. 5, we show two examples to visualize
the definition of true positive, false positive, and false negative.

As shown in Table 2, approximately half of the planets in the synthesized images are
detected. Of the inner planets, 70% to 75% are detected, but only ∼28% of the outer planets
are detected. There appears to be no substantial difference in the planet detection rate between
the instrument contrast level of 10−10 and 10−9, and a moderate increase in the false positive
counts when the instrument contrast level is higher.

We break down the planet detection counts by the idealized S/N, the two wavelength broad-
bands, and the smooth versus resonant disk cases in Figs. 6 and 7. The idealized S/N is defined
for the inner planet. As expected, the true positive counts increase with a higher idealized S/N,
and the false positive and false negative counts decrease (Fig. 6). The gain in the planet detection
rate is significant between the idealized S/N of 5 and 10, whereas the increase is less steep

Fig. 4 Disk inclination reported by the Quartus Engineering team, averaged for each of the sce-
narios, and compared with the true values. The scenario # corresponds to Table 1. The breakdown
between the smooth and resonant disk cases is also shown.
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between a S/N of 10 and 20 (Fig. 7). There is no obvious sensitivity on the two wavelength
broadbands for planet detection.

With a higher level of leaked starlight and solar glint in the 10−9 instrument contrast cases
than the 10−10 instrument contrast cases, the detection rate is only slightly lower. The difference
is more evident for the inner planet and at a higher S/N (Fig. 7). However, the true positive rates
with a resonant disk are substantially lower than the smooth disk cases (Fig. 7). These obser-
vations indicate that distinguishing the background (dominated by the exozodi disk) and the
planets, rather than the instrumental background and noises, is the limiting factor for planet
detection.

Table 2 Counts of detected planets, false positives, and false negatives
reported by the Quartus Engineering team.

Instrument contrast levels

10−10 10−9

Inner + outer planets

Total simulated 1584

Planets reported 1267 1293

True detected 778 746

True detected rate (%) 49.1 47.1

False positives 489 547

False negatives 421 407

Inner planets

Total simulated 720

True detected 535 507

True detected rate (%) 74.3 70.4

Outer planets

Total simulated 864

True detected 243 239

True detected rate (%) 28.1 27.7

sister_R01_v1_sez1_snr2_0425_0552_nm_r2 sister_R02_v2_rez2_snr1_0425_0552_nm_r2

Pixel

P
ix
el

Pixel

P
ix
el

Fig. 5 Two example images from the SEDC. The red crosses identify the position of the simulated
planets, and the green crosses identify the position reported by Quartus Engineering. The green
circles symbolize the PSF aperture used to confirm or reject a reported planet as true positive.
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(a)

(b)

Fig. 7 (a) True positive rates as a function of the input S/N (defined for the inner planet) for the
10−10 and 10−9 instrument contrast performance levels. (b) Breakdown of the true positive rate to
detect the inner planets between the smooth disk and resonant disk cases. Based on the report of
the Quartus Engineering team.

Fig. 6 True positive, false positive, and false negative counts as a function of the idealized S/N for
the two broadbands explored, based on the report of the Quartus Engineering team. The true pos-
itive rate is comparable between the two bands. The false positive counts are lower in the longer
wavelength band, and the false negative counts are lower in the shorter wavelength band. For
each S/N case, there are 264 true planets in total.
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3.1.3 Origin of the false positives and false negatives

We report the breakdown of the false positive cases and the false negative cases as a function of S/
N and the disk density level in Fig. 8. The false positive counts positively correlate with the
exozodiacal disk density level for all of the three (idealized) S/N levels, and more false positives
are found in the resonant disk cases than in the smooth disk cases. Also, increasing the S/N
results in lower false positive counts in the smooth disk cases, but this trend is not obvious
in the resonant disk cases. Similarly, the false negative counts are generally positively correlated
with the exozodi level except for the S∕N ¼ 5 smooth-disk cases. As S/N increases, the number
of false negatives drops as expected. These observations indicate that the exozodi disk, and par-
ticularly its clumpiness, plays a crucial role in generating false positives and false negatives. With
resonant disk structures, simply increasing the S/N does not effectively remove false positives.

It is also informative to tally the false positives and false negatives for each of the star-planet
scenarios in Table 1. As shown in Fig. 9, the false positive counts decrease with larger scenario #
in the smooth disk cases. This is probably related to the background/planet flux ratio assumed in
the images (Table 1). The planetary radii in scenarios 7 to 10 are larger than those in scenarios 5
and 6, which in turn are larger than those in scenarios 3 and 4. Even though the assumed S/N for
the inner planets is the same across these scenarios, for a fixed background, a larger planet
implies a smaller background/planet flux ratio, resulting in less false positives. For the resonant
disk cases, however, we observe a different trend in the false positive counts, where they increase
for larger planets (Fig. 9). This is likely because the dust clumps in the disk are created by the
gravitational effects of the planets, and the larger the planet is, the larger the clumps will be.15 The
dust clumps are sometimes mistaken as planets and thus contribute to the false positive counts.

Meanwhile, the breakdown of the false negative counts by scenario # indicates the role of
disk inclination (Fig. 9). The false negative counts are higher for the high inclination cases (closer
to “edge-on” in scenarios 4, 6, 8, and 10), and the false negative counts are quite low for the low
inclination cases (closer to “face-on”, scenarios 3, 5, 7, and 9). This observation shows that, in a
highly inclined planetary system, the planets may blend with and hide within the exozodiacal
disk. For scenarios 1 and 2 (τ Ceti), which have three planets, we find that planet 2 is generally
not detected due to the high background/planet flux ratio (Table 1), resulting in higher false
negative counts. Similarly, scenario 4 appears to score high counts of both false positives and

Fig. 8 False positive and false negative counts as functions of the exozodiacal disk density for the
smooth and resonant disk cases, reported by the Quartus Engineering team. The false positive
and false negative counts generally increase with disk density for both the smooth and resonant
disk cases for all three S/N cases. Exceptionally, in the smooth disk and S∕N ¼ 5 cases, the false
negative count decreases with the exozodi level, and in the resonant-disk cases, the false negative
count is the lowest for the 3-zodi disk. The tally does not include scenarios 1 and 2 as they have
been simulated with different exozodi levels.
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false negatives. This scenario has small planets embedded in a highly inclined disk, making it a
particularly challenging scenario for planet detection.

3.2 Mississippi State University
The more classical approach26,27 employed by the MSU team allowed the analysis of a few
images per scenario. The first set of images analyzed by the MSU team do not have visible
exozodi signals. Ten images from scenarios 1 and 2 (τ Ceti) have been identified in this category,
and 14 planets have been reported with their positions and planet-star flux ratios. We confirm that
all the planets reported are true detections, but there are additionally 18 planets in these images
that are not reported. All inner planets in the 10 images are detected, and four of the outer planets
are detected. We also find that the flux ratio reported is on average ∼30% lower than the truth,
suggesting that a background estimation is still necessary to correctly measure the planetary flux.
On the same set of 10 images, the Quartus Engineering team reported 18 planets, 14 of which are
true planets and 4 are false positives. The 14 true planets detected are identical between the
two teams.

The second set presented by the MSU team uses multi-epoch subtraction. Twelve images
from six scenarios have been analyzed, and 10 planets have been reported. We also confirm that
all the planets reported are true detections, but there are additionally nine planets in these images
that are not reported. The reported flux ratio is on average ∼25% higher than the truth, again
suggesting that the background estimation could be further optimized. Interestingly, for this sec-
ond set of images, the Quartus Engineering team reported 25 planets of which only five are true
planets. Because the Quartus Engineering team only uses single images in their analysis, this
comparison suggests that combining multi-epoch images could better characterize the back-
ground for planet detection.

The last set presented by the MSU team uses the ZODIPIC software28 to model the disk for
background subtraction. Eight images have been analyzed (four from scenario 1 and four from
scenario 2), and 10 planets have been reported. Of the planets reported, nine are true detections,
and one is a false positive. There are 12 additional planets in these images. The reported flux ratio
is on average ∼10% larger than the truth, and as such, the method using a disk model appears to
perform better than the previous two methods aforementioned. The inclination of the disk has
been reported in this case: the inclination is reported to be 25 deg for the four images of scenario
1 and 10 deg for the four images of scenario 2, and the truth is 35 deg. The reported values are
compatible with the “face on” nature of the disk. For this third set of images, the Quartus
Engineering team reported 20 planets, of which 12 are true detected and 8 are false positives.

Fig. 9 False positive and false negative counts for each astrophysical scenario considered for the
smooth and resonant disk cases, reported by the Quartus Engineering team.

Damiano et al.: Starshade exoplanet data challenge: what we learned

J. Astron. Telesc. Instrum. Syst. 048001-12 Oct–Dec 2024 • Vol. 10(4)



Although a meaningful comparison of multiple disk modeling software packages was
beyond the scope of the modeling work, the MSU team carried out limited testing where they
used alternative software packages, such as Diskmap,29 to fit an astrophysical disk model to the
images. One of the insights from these tests was that, when disk parameters are permitted to be
unconstrained, the planet signals are often identified as point-like resonant disk structures. This
highlights the challenges of determining an accurate computational model for disk subtraction
and indeed reflects the fundamental difficulty of distinguishing true planets from point-like disk
structures.

Overall, by comparing the results from the two teams on the same images, the classical
approach used by the MSU team tends to minimize the false positives, whereas the ICA-based
approach used by the Quartus Engineering team reports more planets but also increases the num-
ber of false positives. This observation suggests that a combination of ICA-based background
estimation and astrophysical disk modeling could maximize the planet detection rates while min-
imizing the false positives.

4 Heuristic Model of Planet Detection
All the inner planets in the synthesized images in the data challenge have an idealized S∕N ≥ 5.
With an accurate estimate of the background, all of these planets should be detected. However,
the Quartus Engineering pipeline applied to all the images resulted in a detection rate of ∼70%
together with a substantial number of false positives (Sec. 3.1.2). Systematic background esti-
mation errors result in the observed detection rates and false positives. Here, we attempt to derive
and constrain the underlying background estimation error, based on the planet detection statistics
reported by the Quartus Engineering team. To do this, we devise a simple model to link the
fractional background estimation error, β, to the planet detection (TP) and false positive (FP)
rates. We focus on the inner planets because they formed the basis for the SNR = 5, 10, and
20 cases. The outer planet SNRs were not reported. Figs. 10 and 11 use symbols to plot the
reported inner planet FP and TP rates for the range of background-to-planet flux ratio in
the simulated images. Here, we break down the images into groups characterized by the
background-to-planet ratio, and there are only eight images in each group. The vertical spread
of the data is a reflection of the small number of samples for each background-to-planet ratio.

The S/N of planet detection is expressed as11

EQ-TARGET;temp:intralink-;e001;117;355S∕N ¼ NPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP þ αNB þ β2N2

B

p ; (1)

where NP is the count from the planet and NB is the count from the background (which may
include contributions of the leaked starlight, the solar glint, the exozodiacal dust, the local zodia-
cal dust, and the detector noises). The parameters α and β result from the background estimation
and subtraction (see section 2.1 of Ref. 11).

We have set up a simple Monte–Carlo model to simulate the detection of exoplanets in the
SEDC images. The model consists of 3 pixels: the first pixel (P1) has the flux from both the
background and the planet. We use this pixel to estimate the TP rate, and the second and third
pixels (P2 and P3) contain only the background. P2 is used to estimate the background, and P3
is used to estimate the FP rate.

The planet is added to P1with a count that is consistent with an idealized S/N of 5, 10, or 20
following the SEDC example. For each S/N, we adjust NP to generate a range of background-to-
planet ratios by rearranging Eq. (1) into Eq. (2) with β ¼ 0 because we do not introduce a
systematic bias in this pixel:

EQ-TARGET;temp:intralink-;e002;117;162NB ¼ 1

α

�
N2

P

S∕N2
− NP

�
: (2)

P2 and P3 use the same mean count NB. We explore the background-to-planet ratios that
range between 0.25 and 250, covering both the planet-dominated and the background-dominated
regimes.

With the mean counts established for each pixel, we generate 10,000 Poisson distributed
noise realizations of each pixel and for each S/N and background-to-planet ratio. We account
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for systematic errors in the background estimation in the following way: in each realization i, the
background estimate is equal to the counts in P2 multiplied by 1 − βi, where βi is a normally
distributed random number with a mean of zero and standard deviation of β. This background
estimate is subtracted from P1 and P3 to form an estimate of the signal in these pixels. We then
look at P1 and P3 to determine if a planet is present by comparing the residual counts to the
standard deviation of the background.

The planet is detected when the background-subtracted signal is greater than a detection S/N
threshold. We find that the final TP and FP rates are insensitive to the exact threshold value over a
range 2 < S∕NThresh < 4. This is not surprising because all planets in the experiment are set to
have an idealized S∕N > 5.

The results are, however, sensitive to β. Figures 10 and 11 use colored curves to show the
Monte–Carlo model predicted TP and FP rates for β ¼ 0.10 and S∕NThresh ¼ 3 as a function of
the background-to-planet ratio. The colored solid curves show the mean expected rates for each
planet S/N case, whereas the colored dashed curves show the �1σ rates assuming that eight
experiments are conducted as was the case in SEDC. We also plot in black the mean model

Fig. 10 Quartus experimental results (symbols) and Monte–Carlo modeled fraction of false pos-
itives for idealized S/N = 5, 10, and 20, with background bias estimation standard deviation β ¼ 0.1
(colored solid curves). Colored dashed curves show the �1σ error range assuming eight trials at
any background-to-planet ratio. The black curves show the predicted mean value for β ¼ 0.5 and
β ¼ 0.02. Curves are the result of 10,000 trials at each evaluated background-to-planet ratio.
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FP and TP rates for background estimation errors β ¼ 0.5 and β ¼ 0.02 (without accompanying
�1σ errors). Visually, the β ¼ 0.02 curve underestimates FP and overestimates TP to at least
background-to-planet ratios of 20, whereas the β ¼ 0.5 curve overestimates FP and underesti-
mates TP to background-to-planet ratio of ∼10. The β ¼ 0.1 curve and its 1σ error range capture
most of the experimental results. Due to the small number of images at each background-to-
planet ratio, the wide range of image conditions, e.g., symmetric versus non-symmetric exozo-
diacal disks, and the simplicity of our model compared with the Quartus Engineering analysis,
we choose to not undertake a formal analysis to quantify the value of β that best fits the data.
However, the simple heuristic model presented here indicates that significant background esti-
mation errors exist in the range of ∼10%.

5 Discussion
The participating teams of SEDC have brought with them diverse expertise and approaches when
analyzing the simulated high-contrast images obtained through a starshade. The Quartus

Fig. 11 Quartus experimental results (symbols) and Monte–Carlo modeled fraction of true pos-
itives for idealized S/N = 5, 10, and 20, with background bias estimation standard deviation β ¼
0.1 (colored solid curves). Colored dashed curves show the �1σ error range assuming eight trials
at any background-to-planet ratio. The black curves show the predicted mean value for β ¼ 0.5
and β ¼ 0.02. Curves are the result of 10,000 trials at each evaluated background-to-planet ratio.
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Engineering team demonstrates that, with a fully non-parametrized and automatic algorithm,
significant information on the planets and exozodiacal disks can be extracted from individual
images. The MSU team shows that, when necessary, classic astrophysical analysis (e.g., model-
based disk characterization) could be applied to address false positives and false positives. The
focus of the image post-processing approaches here is different from the approach developed and
used by the high-contrast exoplanet imaging communities. This is because the current high-
contrast imaging from the ground or using HSTand JWST is limited by residual starlight through
the coronagraph (i.e., the speckles), and the main objective of post-processing for planet
detection is to remove this background through differential imaging or higher spectral
resolution.26,27,30,31 With a starshade (or an advanced coronagraph being developed for the
Habitable Worlds Observatory), the residual starlight no longer contributes significantly to the
background noise; but for the purpose of finding Earth-sized planets, the planet signal is likely
embedded in the background dominated by exozodiacal light. The results presented in this study
are thus applicable broadly for anticipating the level of systematic errors and their impact on
planet detection when the background is dominated by exozodiacal light.

5.1 Planet Detection
This data challenge demonstrated the feasibility to detect planets and extract photometric mea-
surements from starshade-assisted high-contrast observations. Using an independent component
analysis to subtract the background, ∼70% of the inner planets (close to the IWA) can be detected
from individual images. Recall that we have applied an integration time that would result in
idealized S/N of 5, 10, and 20 for the inner planets, and most of the non-detections come from
the S/N = 5 images. This single-image planet recovery rate is significant as the regions of the
image close to the IWA are often distorted by the edges of the starshade and contains the highest
level of background from the exozodiacal dust disk. Therefore, our bona-fide tests have shown
that it is possible to design effective algorithms to meaningfully subtract the background to
expose the planetary signal. The results of the data challenge also suggest that it may be wise
to design a planet search campaign that aims at an idealized (shot-noise-only) S/N of ≥10 as the
planet recovery rate increases substantially from S/N = 5 to S/N = 10.

In addition, ∼40% of the outer planets have been detected. Although the regions are less
impacted by instrumental noise, the light reflected by these planets is dimmer, and it is thus
more challenging to extract them from the background. Therefore, careful background subtrac-
tion is essential so that planets would not be removed by background subtraction (i.e., false
negatives).

The fact that we observe many false positives of the planet detection should be regarded as a
cautionary tale. An inspection of the false positives image-by-image suggests that the false pos-
itives found in the outer regions of the images are often associated with the clumpiness of the
exozodiacal disk, whereas the false positives in the inner regions are more associated with the
instrumental noise (leaked starlight, solar glint, and image distortion caused by the starshade) and
incorrect background subtraction. The existence of false positives is not a surprise—after all, the
reported detections from the Quartus Engineering team are based on single images only. The ICA
method for background estimation employed by the Quartus Engineering team provides a foun-
dation for further improvement. Future studies should be carried out to determine the optimal
ways to vet the false positives by astrophysics-based disk modeling, multi-wavelength image
processing, and multi-epoch planet orbit reconstruction.

Finally, we want to emphasize the fundamental challenges of distinguishing planets from
point-like disk structures. As an example, the controversy regarding Fomalhaut b, which resides
in one of the most easy-to-view and heavily studied debris disks, highlights the potential chal-
lenges to distinguish true planets from disk structures, including collision-induced structures.
Even after more than a decade of multi-wavelength investigations, disk modeling, and orbital
monitoring, it is still unclear whether the object is a planet or dust clumps that form due to the
collision of planetary bodies.32,33 The SEDC did not include the effects of planetary collisions,
but the substantial rates of false positives associated with the resonant disk structures suggest that
distinguishing point-like disk structures should be a focus of future studies of postprocessing and
planet detection in the context of spaceborne high-contrast imaging.
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5.2 Systematic Errors in Background Estimation
The SEDC gives us the possibility to derive an empirical estimate of the achievable quality of
background subtraction, based on the reported detections of planets, false positives and nega-
tives, and the reported photometric measurements. We emphasize that the participating teams had
no knowledge of the truths, and so, the SEDC provides a rare “blind” test of the background
estimation and subtraction. In Sec. 4, we show that the outcomes of the Quartus Engineering
analysis imply a mean background estimation error of ∼10%. This background estimation error
explains most of the false positives and false negatives found. The background estimation error
also results in an irreducible noise floor: S∕N → NP∕βNB when the integration time goes to
infinity, according to Eq. (1). This study recommends β ¼ 0.1 to be included in a more realistic
noise budget when anticipating the scientific returns of future direct imaging instruments work-
ing on the exozodi-limited regime. The concept of the background estimation error has also been
recognized in the context of exoplanet direct imaging using a coronagraph,8,24 and in addition to
the exozodiacal light, the stability of the residual starlight through a coronagraph would also
contribute to the imperfect background calibration.

The finding of significant background estimation error here appears to be inconsistent with
the recent suggestions that the exozodiacal disk and other background signals in high-contrast
images can be subtracted to close to the photon-noise limit (i.e., β ∼ 0 in our notation) over a
wide range of conditions.12,13 Interestingly, both Refs. 12 and 13 and SEDC found that the back-
ground estimation for the purpose of planet detection becomes more difficult when the exozodi
level and system inclination increase. The new revelation here is that even with a relatively low
background-to-planet ratio of 10, and a high idealized S/N of 10, the background estimation error
can still result in substantial false positives and negatives, as well as planet flux estimation errors.
It is important to interpret our finding in the context of the method used for background esti-
mation, which was a non-parametric algorithm without modeling the underlying astrophysical
phenomena. It is entirely possible that the performance of the algorithm can be improved in the
future, for example, by folding in the exozodiacal disk models,15 and the implied β value could be
smaller than what we currently find. For example, using convolutional neural networks on the
same set of synthesized images could result in substantial improvement in the planet recovery
rate, whereas generalization remains challenging.34 As all the synthesized images and the true
values are available from the SEDC webpage, we encourage the community to leverage this
unique dataset and continue exploring image processing techniques for background estimation
and planet detection in the exozodi-limited regime.

6 Conclusion and Prospects
In this paper, we present the outcome of the Starshade Exoplanet Data Challenge, for which the
design and rationale have been described in Ref. 10. We describe the methods taken by the two
participating teams to analyze the synthetic images. One method focuses on the automation of the
program to analyze a large number of images and employs non-parametric modeling and sub-
traction of the background, whereas the other method uses a classic approach with an attempt to
derive a physics-based description of the exozodiacal disk in the image.

From the large ensemble study of the synthetic images and their analysis, we demonstrate
the feasibility of detecting small exoplanets embedded in the exozodiacal disk from individual
images. We show that 70% of the inner planets can be detected, and using an integration time that
yields an idealized S/N of ≥10 would further improve the detection rate. We also show that about
half of the outer planets can be detected. Using a non-parametric background model, however,
would also yield false positives, and we find that many of the false positives are associated with
the assumed dust clumps of exozodiacal disks in orbital resonance with the planets. Further
understanding of the structure of the exozodiacal disks, or a combination of non-parametric mod-
els and physics-based models, could help reduce the number of false positives. In general, we
find that planet detection is more challenging in systems that have a dense or highly inclined
exozodiacal disk.

By comparing a heuristic model to the reported false positives/negatives and planetary fluxes
in this large ensemble study, we derive an empirical estimate of the residual background and find
the mean background estimation error to be 10% in the ICA-based, non-parametric algorithm.
Note that the algorithm was not trained in any way as the truths were not disclosed to the
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participating teams before their submission of the results. Although further improvement of
background estimation algorithms holds the promise to reduce the background estimation error,
it is important to note that this systematic error term is in addition to the photon noise in the noise
budget [Eq. (1)], leads to an irreducible noise floor, and should be considered when estimating
the science capability of future missions.

High-contrast imaging will be the main method to unveil small planets in the habitable zones
of Sun-like stars. The insight into the noise budget and the image post-processing gained in
SEDC will be useful to design the technology and system architecture needed to detect and
characterize these planets. As the dominant noise source in the synthetic images in this study
is exozodiacal light and not residual starlight (or any other starshade-specific noise), the insight
learned here is also applicable to exoplanet direct imaging using a coronagraph that exquisitely
suppresses the starlight and enables exozodi-limited imaging. The images synthesized by the
SEDC will be a good test ground for new methods of image processing; for example, with the
advance of computer vision, one may expect the application of methods based on neural net-
works to reveal the planets in the images. The community data challenge is, again, proven to be a
very effective way to advance our understanding of the science capability of space systems.

Code and Data Availability
The synthesized images, the true values, and the final reports of the participating teams are avail-
able at NASA Exoplanet Exploration Program’s website (https://exoplanets.nasa.gov/exep/
technology/starshade-data-challenge). The image analysis code of Quartus Engineering is avail-
able on GitHub (https://github.com/bdunne6/Exoplanet-Detection-Dev).
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