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Abstract

Atmospheric characterization of Earth-like exoplanets through reflected light spectroscopy is a key goal for
upcoming direct imaging missions. A critical challenge in this endeavor is the accurate determination of planetary
mass, which may influence the measurement of atmospheric compositions and the identification of potential
biosignatures. In this study, we used the Bayesian retrieval framework EXORELR to investigate the impact of
planetary mass uncertainties on the atmospheric characterization of terrestrial exoplanets observed in reflected
light. Our results indicate that precise prior knowledge of the planetary mass can be crucial for accurate
atmospheric retrievals if clouds are present in the atmosphere. When the planetary mass is known within 10%
uncertainty, our retrievals successfully identified the background atmospheric gas and accurately constrained
atmospheric parameters together with clouds. However, with less constrained or unknown planetary mass, we
observed significant biases, particularly in the misidentification of the dominant atmospheric gas. For instance, the
dominant gas was incorrectly identified as oxygen for a modern Earthlike planet or carbon dioxide for an Archean
Earth–like planet, potentially leading to erroneous assessments of planetary habitability and biosignatures. These
biases arise because the uncertainties in planetary mass affect the determination of surface gravity and atmospheric
scale height, leading the retrieval algorithm to compensate by adjusting the atmospheric composition. Our findings
emphasize the importance of achieving precise mass measurements—ideally within 10% uncertainty—through
methods such as extreme precision radial velocity or astrometry, especially for future missions like the Habitable
Worlds Observatory.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheric composition (2021); Bayesian statistics (1900);
Spectroscopy (1558); Direct imaging (387)

1. Introduction

The search for potentially habitable worlds has become a
paramount objective in space research. Identifying planets that
could host life is not only a fascinating scientific endeavor but
also a crucial step toward understanding our place in the
Universe. In line with this goal, the Astro2020 decadal survey
has prioritized the development of a 6 m class telescope
designed to image habitable-zone terrestrial exoplanets in
reflected light, highlighting its significance for future missions
(National Academies of Sciences, Engineering, and Medi-
cine 2021). This telescope, now named “Habitable Worlds
Observatory” (HWO), would enable the detection and detailed
characterization of potentially Earthlike planets with unprece-
dented precision, providing insights into their atmospheric
composition, surface conditions, and potential habitability.

Accurate knowledge of the planetary mass is shown to be
crucial for determining the composition of exoplanetary atmo-
spheres using the transit method, the currently dominating
method to characterize exoplanets (N. E. Batalha et al. 2019a).
The mass of a planet influences its gravitational pull, atmo-
spheric pressure, and the distribution of gases, all of which affect
the observed spectra. Similarly, the knowledge of the planetary
mass is presumed to be important for the proper characterization
of planets via reflected light (J. Crass et al. 2021), but the specific

dependency of the measurement ability on the planetary mass
uncertainties remains unclear.
To address this issue, we explore the impact of planetary

mass uncertainties on the atmospheric retrieval of terrestrial
exoplanets observed in reflected light. We use EXORELR

(M. Damiano & R. Hu 2020, 2022; M. Damiano et al. 2023) to
interpret the spectra of two different atmospheres (i.e., Modern
and Archean Earth analogs), and we assess the effect of
different planetary mass prior knowledge on the retrieved
posterior probability distribution functions.
In the context of reflection spectroscopy, A. Salvador et al.

(2024) discussed the impact of orbit and mass uncertainties.
A. Salvador et al. (2024) investigated the impact of orbital and
mass constraints, derived from precursor radial velocity
surveys or astrometry, on the retrievals of small terrestrial
planetary properties. They suggested that the prior information
on orbital parameters significantly tightens constraints on the
planetary radius, and additional mass knowledge does not
notably enhance the retrieval of atmospheric or bulk properties.
Conversely, our study focuses on the effects of planetary mass
and radius uncertainties on the retrievable atmospheric
information. A. Salvador et al. (2024) highlighted that a higher
signal-to-noise ratio (SNR) could be more beneficial than
additional prior mass information for atmospheric characteriza-
tion. While we do not explore a range of SNR scenarios, our
study on the interplay between the mass uncertainty and
spectral information complements the work presented in
A. Salvador et al. (2024).
EXORELR has already proven to be a valuable tool for

characterizing terrestrial exoplanets in reflected light
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(M. Damiano & R. Hu 2022). This study builds on that
foundation by introducing several enhancements to the retrieval
software and addressing key scientific questions. Our retrieval
framework incorporates advanced statistical methods to derive
atmospheric parameters from spectral data, preserving the
causal relationships between observed spectral features and
underlying atmospheric properties. By applying EXORELR,
we aim to quantify the impact of mass and radius uncertainties
on the retrieval accuracy and identify the most valuable
precursor observational parameters for future missions.

This paper is structured as follows: Section 2 discusses the
setup of the retrievals, key upgrades to EXORELR, and the
various atmospheric scenarios explored in this study. In
Section 3, we present the retrieval results, highlighting the
influence of mass and radius uncertainties on the derived
atmospheric properties. Section 4 articulates the implications of
these findings for the development of future missions. Finally,
Section 5 summarizes the key points of this work, emphasizing
the importance of accurate mass and radius measurements for
the successful characterization of terrestrial exoplanets in
reflected light.

2. Methods

We used EXORELR to explore the relationship between
mass–radius uncertainties and posterior constraints from
retrievals of reflected light spectra. EXORELR is a Bayesian
inverse retrieval framework for spectroscopically directly
imaged exoplanets (M. Damiano & R. Hu 2020, 2022;
M. Damiano et al. 2023). A radiative transfer model is used
to generate spectra, which are compared with the observed
spectra. The free parameters are systematically varied to
determine what combination will produce spectra closest to
the observed spectra. In this way, key parameters such as gas
abundances and the size of the planet can be determined from
its spectrum.

2.1. Upgrades to EXORELR

Compared to our previous works, we introduced a series of
upgrades to the EXORELR software to carry out this study.

2.1.1. Cloud Fraction

The cloud fraction has been introduced as a parameter in our
forward model. Although cloud density is self-consistently
calculated within EXORELR so that the transparency of the
cloud can be modeled, the cloud coverage of the integrated
planetary disk was assumed to be 100% (M. Damiano &
R. Hu 2020). Previously, the cloud transparency/density could
not reproduce the behavior of patchy clouds as the cloud
formulation carries spectral features from water vapor con-
densation. Now, we calculate two models: one with the original
cloud formulation and the other that is free from clouds. We
take the average of the two models, weighted by the cloud
fraction, as the modeled reflected spectrum. This change
effectively moves EXORELR from a 1D model to a 1.5D
model as now two atmospheric columns are taken into
consideration to calculate the model reflected light. In this
manuscript, we fixed the cloud fraction to 25%. The effect of
having cloud fraction as a free parameter will be explored in a
companion study (Z. Burr et al. 2025, in preparation).

2.1.2. Rayleigh Scattering

Another upgrade we introduced is the ability to calculate the
Rayleigh scattering according to the atmospheric composition.
The contribution to the Rayleigh scattering of each of the gases
is taken into account, and the total Rayleigh scattering is the
weighted average of the Rayleigh scattering due to each of the
individual gases based on the volume mixing ratios of
the gases. The Rayleigh scattering is important to constrain
the dominant gas of the atmosphere, especially if the gas does
not show significant spectral features in the considered
wavelength range (near-ultraviolet or NUV, visible or VIS,
and near-infrared or NIR), e.g., N2 and H2. Additionally, the
Rayleigh scattering is sensitive to the amount of clouds as these
tend to mute the spectral feature of Rayleigh scattering. When
we include a cloud-free column in the forward model, a
Rayleigh slope in the spectrum will typically result in a strong
reflection at a shorter wavelength and thus the need for
“retrieving” Rayleigh scattering.

2.1.3. Adaptive Vertical Grid of Model Atmosphere

In the context of radiative transfer calculation, the layering of
the vertical profile plays a crucial role. The more layers the
atmosphere is divided into, the more precise the calculation of
the energy transfer will be, resulting in a more precise
synthesized spectrum. However, the bigger the number of
layers, the more computationally intensive the calculation is. In
the context of retrieval calculations a balance between these
two effects should be employed to reach good precision in the
calculations while being sufficiently fast. Generally, the layers
are equally spaced in the planetary scale height, and when
translated into physical height, more layers are located in the
upper part of the atmosphere. While this is a good practice to
capture the absorption features of the atmospheric gases, it
might create a situation in which the clouds and the atmosphere
beneath are poorly sampled, which will create distortion in the
calculated albedo spectrum. In literature, e.g., N. E. Batalha
et al. (2019b), this issue has been solved by linking the number
of layers in which the cloud is defined with the optical
thickness of the cloud (τc). In EXORELR, τc is not a free
parameter, and so we decided to approach the problem from a
different angle. We defined a grid of layers with the same
number of layers above, within, and below the cloud layer
regardless of the vertical position of the clouds. In this way, we
always ensure that there are enough layers to fully describe
radiative transfer within the cloud layer. We refer to this new
scheme in this manuscript as the “adaptive grid.” For the rest of
this manuscript, we used 80 layers in this adaptive grid scheme.
This new scheme allows us to reduce the computation time as
each of the spectra in the retrieval do not require a large number
of layers (200+). As an example, with this new scheme we
observed that the adaptive grid with 100 layers produces the
same spectrum as a standard grid with 500 layers.

2.1.4. Partial Pressure Sampling

In literature, when retrieving the concentration of molecular
species, the volume mixing ratio (VMR) is generally the most
direct expression that can be used. This scheme works well
when giant planets are considered as H2 is implicitly adopted as
the dominant gas of the atmosphere. When moving toward
small planets, a wider range of bulk atmospheric compositions
needs to be taken into consideration, and the dominant gas is
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not trivial (e.g., R. Hu & S. Seager 2014). In this regime, the
centered-log-ratio (CLR) can be used to leverage its advantage
on compositional analysis (B. Benneke & S. Seager 2012;
M. Damiano & R. Hu 2021). These two methods have worked
well for planets observed via transmission and/or emission
spectroscopy. In reflection spectroscopy, we do not define the
radius of the planet at a specific pressure (as is done in
transmission spectroscopy, for example) because we are
sensitive to the surface pressure, which is linked with the
planetary radius. In this work, we did not fit the surface
pressure, and instead we introduced the partial pressure of the
gases as free parameters (A. Salvador et al. 2024). The sum of
the gas partial pressures is the surface pressure by definition
(see Equations (1) and (2)):

( )å d=P P 1
n

0 gasn

( )d = ´P P VMR 2gas 0 gasn n

where dPgasn
is the partial pressure of the nth gas, VMRgasn

is the
nth gas volume mixing ratio, and P0 is the surface pressure.

Using the partial pressure to define the atmospheric
composition gives the advantage of removing the need for
the concept of a filler gas, as all the gas partial pressures are
free and independent parameters, including those that are not
spectroscopically active in the considered wavelength range.
Another advantage is the ease of switching from the partial
pressure space to the VMR space, as the transformation is
linear. When CLR is used, the transformation to VMR is not
linear, and nonuniform priors may be required (M. Damiano &
R. Hu 2021).

2.1.5. Planetary Mass as Free Parameter

Given the focus on this parameter in this study, we defined
and explored different prior probability functions. A novel type
of prior function, the “2D prior,” is introduced, which leverages
the correlation between planetary mass and radius. This
conditional mass–radius prior relation was adopted from
L. Zeng et al. (2016) models (see Figure 1). The planetary
radius has a uniform prior, and for a given radius, the mass is
drawn from a uniform distribution between the corresponding
mass for a 100% iron planet to the corresponding mass for a
100% water ice planet. These two cases represent the
theoretical upper and lower bounds on density for a terrestrial
planet. This 2D prior limits the search space to only physically
realistic scenarios, enabling better fitting of the planetary mass
than the independent uniform prior. By using this prior
function, we are introducing information into our retrieval
process that is physically motivated. When using the 2D prior,
the uniform distribution for radius is decreased from [0.5, 10]
R⊕ to [0.58, 2.2] R⊕, as this is the range that the models of
L. Zeng et al. (2016) cover.

Additionally, we also consider the simplest prior for the
planetary mass: a uniform flat prior between two fixed values
([0.01, 20]M⊕), as well as a Gaussian prior to simulate a
situation where the mass uncertainty is provided (e.g., with
radial velocity measurements). In this study, we considered two
Gaussian priors that correspond to a 3.3σ or 10σ detection of
the planetary mass.

2.2. Retrieval Setup

In this study, the partial pressure of H2O, CH4, CO2, O2, O3,
and N2 are considered as free parameters, and we transform the
partial pressures into VMR in the posterior distribution graphs
shown in this paper. We consider water clouds as the only
condensates. The clouds are modeled as described in
M. Damiano & R. Hu (2020) and are fit with the cloud top
pressure (Ptop,H O2 ), cloud depth (Dcld,H O2 ), and condensation
ratio (CRH O2 ), as well as the VMR of water below the clouds.
We also included a variation in which the cloud particle size is
additionally considered as a free parameter. In EXORELR, the
particle size is typically estimated based on microphysics
(R. Hu 2019). By including a free particle size, we assume
instead a constant average value across the atmosphere. The
planetary mass and the planetary radius are included as free
parameters, as described in Section 2.1.5.
Table 1 lists the free parameters, the prior space used, and

the range in which the parameters are probed. EXORELR uses
MultiNest (F. Feroz et al. 2009) to sample the Bayesian
evidence, estimate the parameters, and calculate the posterior
distribution functions. MultiNest is used through its
Python implementation pymultinest (J. Buchner et al.
2014). For all the retrieval analyses presented here, we used
2000 live points and 0.5 as the Bayesian evidence tolerance.

2.3. Atmospheric and Observational Scenarios

To study the effect of different mass uncertainties on the
interpretation of the atmospheric characterization, we used
three different terrestrial planet scenarios:

1. A cloud-free modern Earthlike atmosphere. N2 domi-
nated (~79%) with O2 (~20%) and trace amounts of H2O,
O3, CH4, and CO2 (see Table 2);

Figure 1. Mass–radius relations used for the 2D prior (L. Zeng et al. 2016).
The shaded region shows the full search space of the retrieval when using this
prior function. The radius is chosen from a uniform distribution between 0.58
and 2.2 R⊕, then the mass is chosen from a uniform distribution between the
corresponding mass for a 100% water ice planet and a 100% iron planet with
this radius. For example, for a radius of 1.25 R⊕, the mass can vary from 0.65
to 5.2 M⊕.
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2. A modern Earthlike atmosphere. N2 dominated (~79%)
with O2 (~20%) and trace amounts of H2O, O3, CH4, and
CO2, and a cloud deck at ~0.6 bar with a cloud fraction of
25% (see Table 3);

3. An Archean Earth-like atmosphere. The Earth's atmos-
phere as it was approximately 4–2.5 billion yr ago.
Similar to the modern Earth, but with less O2 and
considerably more CH4 and CO2 (see Table 4).

For all the scenarios, 1M⊕, 1 R⊕, 1 au, and 60 deg phase
angle were adopted. We considered five retrieval scenarios: a
case in which the mass is fully known and the radius is a free
parameter along with other atmospheric parameters, and four
scenarios in which the planetary mass is a free parameter and
varying different prior functions as listed in Table 1.
Additionally, for the modern Earthlike and Archean Earth–
like, we ran an additional case in which the particle size is a
free parameter instead of being self-consistently calculated. The
spectra are generated in the NUV from 0.25 to 0.4 μm at R= 7,
the VIS from 0.45 to 1.0 μm at R= 140, and NIR from 1.0 to
1.8 μm at R= 70. This is consistent with previous mission
concept studies (A. Roberge & L. A. Moustakas 2018;
B. S. Gaudi et al. 2020).

A new noise model was developed for this work, which is
explained in more detail in the Appendix. The model includes
the wavelength-dependent behavior of noises in high-contrast
imaging. It represents a simple limiting case with very good
starlight suppression and low detector noise, in which photon
noise from the astrophysical scene dominates. We follow the
analytic prescription outlined in T. D. Robinson et al. (2016).
We assume exozodi dominate over local zodi, and neglect local
zodi. Dark current is also ignored, assuming that a future
exoplanet imaging mission will have good enough detectors
that the dark current will be lower than photon noise at all
wavelengths, as is already the case for the Roman CGI in
broadband imaging (P. Morrissey et al. 2023). The speckle
residuals are likewise neglected. This leaves the shot noise
from the planet and the exozodi as the only remaining noise
sources. The model is scaled to an SNR of 20 at 0.75 μm. This

noise model defines the error bars of the synthesized spectra,
and corresponding Gaussian noise is added to simulate a
realistic observation. After simulating the reflected light spectra
and generating the synthetic data (Figure 2), we proceeded to
run EXORELR for each scenario previously described in
Section 2. Tables 2, 3, and 4 report the numerical values of the
retrieval scenarios considered in this work.

3. Results

3.1. Cloud-free Modern Earthlike

Without clouds as a complicating factor, EXORELR is able
to correctly determine all the free variables (i.e., the truth value
is included within the posterior distribution functions) in all
scenarios (see Figure 3). The background gas is correctly
determined to be N2, with O2 being the second most abundant.
The radius is very tightly constrained (to within 1%) in all
scenarios.
Zooming in on just the planetary mass, radius, and surface

pressure (Figure 4), we do not find correlations between
planetary mass and radius. However, there is a strong positive
correlation between mass and surface pressure, indicating that
the spectrum is approximately sensitive to the column
abundances (~P/g). For the unknown prior, the 2D prior,
and the 30% Gaussian prior, the mass is constrained to
1 ± 0.2M⊕. This shows that some knowledge of the mass can
be derived from the spectrum itself. The 10% Gaussian prior
has tighter constraints on the mass than what can be derived
from the spectrum, which also translates into a slightly better
constraint on the surface pressure. In the case of perfect mass
knowledge, the surface pressure has the tightest constraint. The
surface pressure is a derived parameter and it is linked to the
sum of the partial pressure of the single gases in the
atmosphere. Therefore the planetary mass correlates with the
atmosphere composition overall. For example, a looser
constraint on the planetary mass results in a slightly higher
variance in the posterior distribution of water vapor.

3.2. Modern Earthlike

Stepping up the complexity, we then took into consideration
the Modern Earth case with the addition of a cloud deck. The
presence of a cloud deck introduces uncertainty in the retrieval
process: clouds can obscure the Rayleigh scattering slope,
which is the primary feature used to constrain the abundance of
N2. Furthermore, clouds can obscure the planetary surface,
complicating the determination of the planetary radius.
In the first scenario, we assume perfect knowledge of the

planetary mass. This scenario serves as our baseline, against
which subsequent scenarios are compared. As expected, all the
true values have been accurately retrieved in the baseline
scenario except for a small bias in the position of the cloud
layer, but still within 3σ (see Figure 7). The retrieved
atmosphere is N2 dominated, with a significant amount of
O2, followed by approximately 1% H2O. The cloud deck is
correctly retrieved within 3σ of the true value, and the
planetary radius is well constrained at 1 R⊕.
When the planetary mass is treated as a free parameter, we

observe that the mass posteriors converge to values substan-
tially smaller than the truth unless the prior mass constraints are
10σ. In tandem with the biased mass estimate, the background
gas is incorrectly identified as oxygen instead of nitrogen
(Figure 7). This misidentification likely arises because the

Table 1
Model Parameters and Prior Probability Distributions Used in the Atmospheric

Retrievals

Parameter Symbol Prior

Cloud top pressure [Pa] Ptop,H O2  (2.0, 7.0)

Cloud depth [Pa] Dcld,H O2  (2.0, 7.0)
Condensation ratio CRH O2  (−7.0, 0.0)
Partial pressure H2O [Pa] PP (H2O)  (−7.0, 7.0)
Partial pressure CH4 [Pa] PP (CH4)  (−7.0, 7.0)
Partial pressure CO2 [Pa] PP (CO2)  (−7.0, 7.0)
Partial pressure O2 [Pa] PP (O2)  (−7.0, 7.0)
Partial pressure O3 [Pa] PP (O3)  (−7.0, 7.0)
Partial pressure N2 [Pa] PP (N2)  (−7.0, 7.0)
Planetary mass [M⊕] Mp  (0.01, 20.0)

 (1.0, sM
2

p )

2D priora

Planetary radius [R⊕] Rp  (0.5, 10.0)
(when using the 2D prior for mass)  (0.58, 2.2)

Notes. ( ) a b, is the uniform distribution between values a and b, ( ) a b, is
the log-uniform (Jeffreys) distribution between values a and b, and ( )m s , 2 is
the normal distribution with mean μ and variance σ2.
a L. Zeng et al. (2016).
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Rayleigh scattering slope at low wavelengths is similar for O2

and N2, and the slope is impacted by the planetary mass and
can be obscured by clouds. While the other gases were mostly
retrieved correctly (e.g., the true values bracketed by posterior
distributions), we find a slight bias in the retrieved mixing ratio
of ozone. Methane (CH4) and carbon dioxide (CO2) may, in
some cases, be loosely constrained, as their abundances are low
enough to not produce significant absorption features that can
be fully interpreted by the retrieval. Additionally, the cloud
deck was retrieved at a higher altitude by about an order of
magnitude.

Again, we observe correlations between the planetary mass,
radius, and surface pressure (Figure 5). Here, the relationship
appears linear when the surface pressure is expressed in

logarithmic space and the mass in linear space. Similarly, we
observe a comparable behavior between the planetary radius
and surface pressure, which translates into a correlation
between mass and radius (Figure 5). Physically, this behavior
can be explained by considering that a less massive planet has a
lower surface gravity; thus, a lower pressure above the cloud
deck is required to maintain the same atmospheric column in
number density.
Additionally, we also consider a variation of this

scenario in which we also set the cloud particle size as a
free parameter. When the particle size is retrieved to a
constant average value throughout the atmosphere, it reveals
additional effects in the constraints of mass, radius, and
surface pressure (Figure 6). We observe that the posterior

Figure 2. Simulated spectra and data models for the Modern and Archean Earth–like scenarios. The data points are obtained by binning the synthesized model and by
applying Gaussian noise and error bars as defined in the Appendix. Top panel: modern Earthlike. Bottom panel: Archean Earth–like.

Table 2
Atmospheric Parameters Used to Simulate the Modern Earthlike (Cloud-free) Scenario and the Retrieval Results for the Five Scenarios Considered

Parameter Input Perfect Mp Unknown Mp 2D Prior Gaussian Prior (30%) Gaussian Prior (10%)

Log(P0) [Pa] (derived) 5.00 5.01-
+

0.01
0.02 5.03-

+
0.09
0.08 5.01-

+
0.12
0.09 5.01-

+
0.09
0.07 5.01-

+
0.04
0.04

Log(VMRH O2 ) −2.52 −2.56-
+

0.04
0.04 −2.57-

+
0.06
0.05 −2.56-

+
0.07
0.07 −2.56-

+
0.06
0.06 −2.56-

+
0.04
0.04

Log(VMRCH4) −5.70 −5.76-
+

3.85
0.55 −5.75-

+
3.64
0.54 −5.76-

+
3.65
0.54 −5.81-

+
3.92
0.60 −5.85-

+
3.91
0.63

Log(VMRCO2) −3.40 −5.54-
+

4.41
2.24 −5.38-

+
4.48
2.09 −5.71-

+
4.30
2.40 −5.73-

+
4.33
2.42 −5.54-

+
4.50
2.24

Log(VMRO2) −0.67 −0.62-
+

0.08
0.08 −0.65-

+
0.11
0.10 −0.63-

+
0.12
0.11 −0.63-

+
0.10
0.10 −0.62-

+
0.09
0.09

Log(VMRO3) −6.15 −6.14-
+

0.02
0.02 −6.14-

+
0.02
0.02 −6.14-

+
0.02
0.02 −6.14-

+
0.02
0.02 −6.14-

+
0.02
0.02

Log(VMRN2) −0.11 −0.12-
+

0.03
0.02 −0.11-

+
0.03
0.03 −0.12-

+
0.04
0.03 −0.12-

+
0.04
0.03 −0.12-

+
0.03
0.02

Mp[M⊕] 1.00 L 1.06-
+

0.20
0.22 1.00-

+
0.26
0.25 1.00-

+
0.19
0.19 1.00-

+
0.08
0.08

Rp[R⊕] 1.00 1.01-
+

0.01
0.01 1.00-

+
0.01
0.01 1.00-

+
0.01
0.01 1.00-

+
0.01
0.01 1.00-

+
0.01
0.01

μ[g mol−1] (derived) 28.83 28.95-
+

0.17
0.21 28.89-

+
0.20
0.23 28.92-

+
0.22
0.27 28.93-

+
0.20
0.24 28.94-

+
0.18
0.21

Note. The error bars of the retrieval median results correspond to the 68% confidence interval (i.e., 1σ).
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distribution of surface pressure and radius are now biased,
and the planetary mass is centered at slightly smaller
values. The surface pressure and the radius are inversely
correlated, i.e., the larger the planet, the lower the surface
pressure.

A very similar behavior is observed when running the
retrieval using other types of prior functions for the planetary
mass, including a Gaussian prior with a 30% standard
deviation. Although conceptually, the 2D prior and the
Gaussian prior are more stringent in terms of prior assumptions,

Figure 3. Posterior distribution functions of the Bayesian analysis on the cloud-free modern Earthlike reflected spectrum of all scenarios defined in Section 2.1.5.

Table 3
Atmospheric Parameters Used to Simulate the Modern Earthlike Scenario and the Retrieval Results for the Five Scenarios Considered

Parameter Input Perfect Mp Unknown Mp 2D Prior Gaussian Prior (30%) Gaussian Prior (10%)

Log(P0) [Pa] (derived) 5.00 4.98-
+

0.04
0.03 4.69-

+
0.10
0.09 4.62-

+
0.04
0.06 4.57-

+
0.08
0.09 4.96-

+
0.03
0.03

Log(Ptop,H O2 ) [Pa] 4.78 4.58-
+

0.09
0.08 3.95-

+
0.14
0.11 3.91-

+
0.12
0.08 3.99-

+
0.10
0.09 4.69-

+
0.06
0.05

Log(Dcld,H O2 ) [Pa] 4.00 4.36-
+

0.09
0.09 3.91-

+
0.09
0.09 3.86-

+
0.14
0.11 3.65-

+
0.15
0.15 4.24-

+
0.14
00.08

Log(CRH O2 ) −3.50 −6.06-
+

0.57
0.72 −5.05-

+
0.84
0.89 −5.15-

+
0.90
0.81 −5.05-

+
1.16
1.30 −4.82-

+
0.81
1.0

Log(VMRH O2 ) −2.52 −2.67-
+

0.06
0.07 −2.48-

+
0.05
0.06 −2.48-

+
0.05
0.06 −2.48-

+
0.07
0.08 −2.61-

+
0.05
0.06

Log(VMRCH4) −5.70 −6.17-
+

0.48
0.51 −5.65-

+
0.35
0.33 −6.10-

+
0.32
0.48 −5.97-

+
0.34
0.42 −9.94-

+
1.14
1.67

Log(VMRCO2) −3.40 −5.23-
+

1.05
1.22 −3.40-

+
0.47
0.41 −5.06-

+
0.94
1.42 −4.86-

+
0.96
1.11 −10.53-

+
0.80
1.01

Log(VMRO2) −0.67 −0.67-
+

0.08
0.10 −0.01-

+
0.01
0.00 −0.001-

+
0.001
0.001 −0.001-

+
0.001
0.001 −0.72-

+
0.08
0.09

Log(VMRO3) −6.15 −6.10-
+

0.04
0.04 −6.02-

+
0.02
0.02 −6.03-

+
0.02
0.02 −6.03-

+
0.02
0.03 −6.11-

+
0.03
0.03

Log(VMRN2) −0.11 −0.11-
+

0.03
0.02 −2.01-

+
1.17
0.63 −4.13-

+
1.62
1.85 −4.25-

+
1.44
1.94 −0.09-

+
0.03
0.02

Mp[M⊕] 1.00 L 0.57-
+

0.07
0.06 0.49-

+
0.03
0.04 0.45-

+
0.05
0.07 0.99-

+
0.04
0.04

Rp[R⊕] 1.00 1.02-
+

0.01
0.02 1.10-

+
0.03
0.02 1.10-

+
0.02
0.02 1.11-

+
0.02
0.02 1.02-

+
0.01
0.02

μ[g mol−1] (derived) 28.83 28.85-
+

0.15
0.23 31.92-

+
0.13
0.04 31.95-

+
0.02
0.01 31.95-

+
0.02
0.01 28.75-

+
0.13
0.18

Note. The error bars of the retrieval median results correspond to the 68% confidence interval (i.e., 1σ).
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the retrieved planetary mass remains consistent with that of the
unknown mass prior scenario. Finally, when a Gaussian prior
with a 10% standard deviation is used for the planetary mass,
the prior constraint becomes sufficient to correctly identify the
atmospheric components and other free parameters (Figure 7).
This result underlines how a tight prior knowledge of the mass
is needed to correctly identify the background gas and the
surface pressure on an Earthlike exoplanet.

3.3. Archean Earth–like

Given the results of the modern Earthlike scenario, we
decided to test the same set of mass uncertainties on a different
kind of atmosphere. The Archean Earth–like planet has
considerably less oxygen and more CO2 than the modern
Earthlike planet. This way we can test if the misinterpretation

of the background gas is linked to O2/N2 correlations or if they
are an effect of the mass uncertainty more generally.
As in the case of the modern Earthlike scenario, we started

by fixing the planetary mass. In this case (Figure 8), we
retrieved all the parameters correctly, i.e., the truth values are
encompassed within the posterior distributions. Using this as
the baseline scenario, we then included the mass as a free
parameter and explored the different prior functions for the
planetary mass described in Section 2.2.
Similarly to the modern Earthlike scenario, we find that the

background gas would be incorrectly identified if the planetary
mass is not known to be better than ~10σ (Figure 8). Here, the
retrieval settled on CO2 rather than N2 as the background gas if
the mass is not assumed to be well known. This shows that the
misinterpretation of the background gas does not seem to be
related to O2 particularly but rather to how the retrieval

Table 4
Atmospheric Parameters Used to Simulate the Archean Earth-like Scenario and the Retrieval Results for the Five Scenarios Considered

Parameter Input Perfect Mp Unknown Mp 2D prior Gaussian Prior (30%) Gaussian Prior (10%)

Log(P0) [Pa] (derived) 5.00 4.89-
+

0.04
0.07 5.12-

+
0.15
0.16 5.06-

+
0.12
0.09 4.95-

+
0.09
0.08 4.95-

+
0.05
0.05

Log(Ptop,H O2 ) [Pa] 4.78 4.40-
+

0.14
0.18 4.51-

+
0.16
0.17 4.47-

+
0.14
0.13 4.40-

+
0.13
0.12 4.57-

+
0.14
0.13

Log(Dcld,H O2 ) [Pa] 4.00 4.19-
+

0.22
0.17 4.40-

+
0.24
0.22 4.32-

+
0.23
0.20 4.23-

+
0.23
0.19 4.31-

+
0.17
0.13

Log(CRH O2 ) −3.50 −5.01-
+

1.27
1.42 −4.95-

+
1.40
1.52 −4.93-

+
1.35
1.45 −4.92-

+
1.36
1.39 −5.40-

+
0.95
1.09

Log(VMRH O2 ) −1.00 −0.77-
+

0.21
0.19 −0.77-

+
0.18
0.15 −0.74-

+
0.16
0.15 −0.72-

+
0.17
0.16 −0.89-

+
0.15
0.17

Log(VMRCH4) −2.00 −1.66-
+

0.23
0.09 −1.56-

+
0.08
0.07 −1.58-

+
0.07
0.07 −1.61-

+
0.08
0.07 −1.90-

+
0.09
0.11

Log(VMRCO2) −1.00 −0.16-
+

0.50
0.07 −0.11-

+
0.06
0.03 −0.11-

+
0.05
0.03 −0.12-

+
0.08
0.04 −0.66-

+
0.17
0.19

Log(VMRO2) −7.00 −4.23-
+

1.80
1.50 −4.31-

+
1.85
1.64 −4.39-

+
1.71
1.64 −4.42-

+
1.68
1.67 −6.68-

+
3.19
2.96

Log(VMRN2) −0.10 −2.11-
+

3.36
1.92 −3.86-

+
2.24
2.34 −3.91-

+
2.14
2.34 −3.78-

+
2.07
2.56 −0.21-

+
0.10
0.07

Mp[M⊕] 1.00 L 1.77-
+

0.51
0.80 1.56-

+
0.40
0.34 1.20-

+
0.21
0.24 1.01-

+
0.07
0.08

Rp[R⊕] 1.00 1.01-
+

0.01
0.01 1.01-

+
0.01
0.01 1.01-

+
0.01
0.01 1.01-

+
0.01
0.01 1.01-

+
0.01
0.01

μ[g mol−1] (derived) 28.49 36.16-
+

6.09
2.92 38.46-

+
2.17
1.55 38.21-

+
2.85
1.71 37.85-

+
2.14
1.59 29.90-

+
1.02
1.93

Note. The error bars of the retrieval median results correspond to the 68% confidence interval (i.e., 1σ).

Figure 4. Posterior distribution functions for planetary mass, radius, and
surface pressure for the cloud-free modern Earthlike scenario. The surface
pressure is a proxy for the atmospheric gases collectively as the sum of their
partial pressure is equal to the surface pressure.

Figure 5. Posterior distribution functions for planetary mass, radius, and
surface pressure for the modern Earthlike scenario. The surface pressure is a
proxy for the atmospheric gases collectively as the sum of their partial pressure
is equal to the surface pressure.
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interprets the gases that have strong spectral features versus the
gases that do not. Misidentification of the dominant gas causes
biases in the estimates of other gases. For example, CH4 was
retrieved slightly higher than the input value. H2O was
correctly constrained, and O2 was unconstrained as expected,
as there are no measurable spectral features with an input value
of 10−7. The cloud deck was overall correctly identified. The
position is slightly higher and slightly deeper than the input
cloud, but still within 3σ from the input values.

Meanwhile, even though the mass was allowed to span up to
20M⊕, the retrieval converged to a small range around the true
value, confirming that the spectrum indeed contains informa-
tion about the planetary mass. With a flat prior on the mass, we
find a broad posterior distribution centered at larger values (i.e.,
1.77 -

+
0.51
0.80 M⊕), with the planetary radius retrieved correctly

with a tight constraint around 1 R⊕. Using the 2D prior on the
planetary mass and radius tightens the mass constraints to
1.56 -

+
0.40
0.34 M⊕, as the mass now depends on the value of the

radius. This result suggests that, in some cases, the spectrum
alone can give planetary mass constraints to ∼3σ.

Giving a closer look at the correlations between key
parameters (Figure 9), we observe that the planetary mass
and the surface pressure also in this case appear to be
correlated. The correlation appears to be similar to the one
observed in both previous atmospheric scenarios (see Figures 4
and 5), with a tighter mass constraint leading to a tighter
constraint on the surface pressure. Unlike the modern Earthlike
with clouds scenario, we do not observe correlations between
the planetary radius and the other two parameters.

Moreover, as in the case of the modern Earth analog, we
consider a variation of this first case for the Archean Earth
analog by including the cloud particle size as a free parameter
(Figure 10). Differently from the modern Earthlike scenario, we
do not observe biases; however, we notice that the posterior
distribution of surface pressure, mass, and radius have longer
tails toward larger values, and the planetary mass can now

stretch to >6M⊕. While the retrieved value for the particle size
largely agrees with the self-consistent formulation used to
synthesize the spectrum in the first place, treating the cloud
particle size as a free parameter notably degrades the mass
constraints obtained from the spectrum.

4. Discussion

4.1. Comparison with Previous Studies

A. Salvador et al. (2024) explored the impact of prior
knowledge of planetary mass and orbital parameters on the
atmospheric characterization of directly imaged Earthlike
exoplanets in reflected light. The authors simulated observa-
tions of a modern Earth analog obtained by future missions like
the Habitable Worlds Observatory. They performed atmo-
spheric retrievals under varying levels of prior information,
including scenarios with no prior constraints on planetary orbit
and mass, known orbit, known orbit and mass, and only mass
constrained.
The study finds that prior knowledge of orbit-related

parameters, such as orbital distance and phase angle,
significantly improves the determination of the planetary radius
from reflected light observations, thereby helping to identify
the planet's type and density. This improvement arises due to a
strong degeneracy between the orbit and radius in the planet-to-
star flux ratio. However, additional prior knowledge of the
planet's mass does not notably enhance radius determination or
atmospheric characterization in that study.
In this study, we assume that the planetary orbit has been

constrained within reasonable error bars so that the position of
the planet in its orbit would be known. Once the orbit is known,
the characterization observation can be scheduled, and the
reflected spectrum of the planet can be observed. In this work,
we focused more on the interaction between the planetary mass
and the atmospheric composition. The results shown in this
paper agree with A. Salvador et al. (2024) in the sense that the
spectrum can generally constrain the planetary radius when the
orbital configuration is known. We do see that the spectrum
contains some information about the mass, and when imposing
the 2D prior introduced in this paper, the mass may even be
constrained from the spectrum alone in some cases (Figure 9).
However, as a crucial revelation, our results suggest that the
ability to retrieve the background gas hinges on highly precise
prior mass constraints.

4.2. Identification of the Background Gas

Misidentifying the background gas can be a substantial issue
as it can render a habitable planet (moderate concentration of
O2) into a postrunaway, inhospitable world (massive
O2-dominated atmosphere). Indeed, the identification of O2 as
a biosignature relies on the knowledge that the background
atmosphere is not O2 dominated (R. Wordsworth & R. Pierre-
humbert 2014; C. E. Harman et al. 2015; V. S. Meadows 2017;
L. Sproß et al. 2021).
In this work, we showed that the lack of precise planetary

mass prior knowledge will likely prevent the background gas
from being correctly identified, even with a spectrum that
covers from the UV to the NIR. In the case of the modern Earth
analog with clouds, N2 is misidentified as O2, and in the case of
the Archean Earth–like planet, the N2 is misidentified as CO2.
In both cases, the common factor is an active absorbing gas
versus a gas that does not show absorption features in the

Figure 6. Posterior distribution functions for planetary mass, radius, surface
pressure, and particle size for the modern Earthlike scenario. The surface
pressure is a proxy for the atmospheric gases collectively as the sum of their
partial pressure is equal to the surface pressure.
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considered wavelength range. Not having a mass constraint
equates to not having a surface gravity constraint, and this
affects the calculation of the atmospheric scale height. The
retrieval algorithm seeks to balance the difference in the scale
height with different mean molecular masses. In the case of
modern Earth, the two most abundant gases have close mean
molecular mass (28 for N2 and 32 for O2), and the mass
constraints must be stringent enough to distinguish between the
two. For the Archean Earth analog, instead, the difference
between N2 and CO2 in terms of mean molecular mass is
greater (28 for the former and 44 for the latter), and we see that
different constraints on the planetary mass are indeed reflected
in the posterior distribution of N2 and CO2. A strong fit of the
Rayleigh scattering will help in the identification of the
background gas (see Section 3.1). However, the presence of
clouds tends to mute the Rayleigh feature, making it more
challenging to uniquely associate it with the background gas.

4.3. Toward 10% Mass Uncertainty

Radial Velocity (RV) observations are the most successful
tool to date for determining the masses of small exoplanets.
Measurements of a star's radial velocity (RV) made using
stable, high-resolution, optical, or NIR spectrographs can be
used to determine the orbital parameters of the exoplanets it
hosts (C. Lovis & D. Fischer 2010). Time series measurements

of Doppler shifts in the star's spectral lines that are caused by
the gravitational influence of an orbiting planet allow for the
derivation of the planet's minimum mass (Mp sin(i)), where i is
the inclination of the planet's orbital plane relative to the line of
sight.
Most RV-discovered planets to date, where no precise period

and orbital phase priors are provided by accompanying transit
detections, have RV semiamplitudes K> 1 m s−1. This limit is
set primarily by the presence of stellar phenomena such as star
spots, plage, and granulation, which can deform stellar
absorption features and obscure Keplerian Doppler signals
(see, e.g., N. Meunier et al. 2010; A. Collier Cameron et al.
2019). The RV semiamplitudes of an Earth-mass planet
orbiting at the Earth Equivalent Irradiation Distance around
likely HWO target stars (E. Mamajek & K. Stapelfeldt 2024)
ranges from 5 to 50 cm s−1, notably smaller than the current
state of the art. Achieving the 10% mass uncertainty
recommended in this study will therefore require that the
uncertainties of the relative RV measurements be �10 cm s−1

over timescales of years to decades so that systematic errors do
not dominate the planet signals (J. K. Luhn et al. 2023).
While 10σ mass measurements (smpl / mpl � 10) of Earth

analogs have not yet been demonstrated, the development
of a new generation of Extreme Precision RV (EPRV)
instruments including ESPRESSO (F. Pepe et al. 2021), NEID

Figure 7. Posterior distribution functions of the Bayesian analysis on the modern Earthlike reflected spectrum of all the scenarios defined in Section 2.1.5.
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(C. Schwab et al. 2016), EXPRES (R. R. Petersburg et al. 2020)
and KPF (S. R. Gibson et al. 2024) has improved the precision of
single RV measurements to ∼30 cm s−1. And dedicated treatment
of instrument systematics and stellar activity in long baseline
RV time series from the previous generation of stabilized
RV instruments has demonstrated Doppler Sensitivity at
the 50–60 cm s−1 level over timescales of 1–2 yr (see, e.g.,
M. Cretignier et al. 2023; A. A. John et al. 2023).
Further improvements to both instrument performance and

stellar variability modeling/mitigation will be required in the
coming years to advance extreme precision RV (EPRV)
capabilities, but these recent results show promising forward
momentum. We note, however, that the radial velocity method
alone measures only the projected mass of the planet, leaving
its true mass uncertain. We also note that stars above the Kraft
break (Teff � 6250 K) will not be amenable to EPRV
measurements because their fast rotation periods produce
significant rotational broadening, thereby decreasing the
amount of Doppler information content contained within their
spectra (T. G. Beatty & B. S. Gaudi 2015).
Astrometry is another powerful technique for determining

the masses of exoplanets. By precisely tracking the star's
motion on the plane of the sky over time, astrometry could
provide a direct measurement of the planet's mass without the

isin ambiguity inherent in radial velocity methods, as it is

Figure 8. Posterior distribution functions of the Bayesian analysis on the Archean Earth–like reflected spectrum of all the scenarios defined in Section 2.1.5.

Figure 9. Posterior distribution functions for planetary mass, radius, and
surface pressure for the Archean Earth–like scenario. Note that the surface
pressure is a proxy for the atmospheric gases collectively as the sum of their
partial pressure is equal to the surface pressure.
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sensitive to the inclination of the orbit (S. C. Unwin et al. 2008).
In the context of the HWO, astrometry could play a crucial role
in directly measuring the masses of small terrestrial planets
(F. Malbet et al. 2012; A. Quirrenbach et al. 2014). The
combination of astrometric measurements from HWO with its
direct imaging capabilities can yield both the mass and orbital
parameters of Earth-sized planets in the habitable zones of
nearby stars, enhancing our understanding of their potential
habitability (National Academies of Sciences & Medicine 2021).

5. Conclusion

In this study, we explored the impact of planetary mass
uncertainties on the atmospheric retrieval of terrestrial
exoplanets observed in the reflected light. Utilizing an
enhanced version of EXORELR, we incorporated several
upgrades, including cloud fraction modeling, composition-
dependent Rayleigh scattering, an adaptive vertical grid, partial
pressure sampling, and the inclusion of planetary mass as a free
parameter with various prior probability functions. We also
introduced a method to more realistically calculate the error
bars of the simulated spectrum. This new routine takes into
consideration the star photon noise, exozodi approximation,
and spectral resolution of the simulated data; and analytically
calculates the signal-to-noise per spectral element.

Our retrieval analyses were conducted on three atmospheric
scenarios: a cloud-free modern Earthlike atmosphere, a modern
Earthlike atmosphere with a cloud deck, and an Archean Earth–
like atmosphere. We considered different prior knowledge of
the planetary mass, ranging from perfectly known mass to
scenarios with varying degrees of uncertainty.

The results indicate that precise knowledge of the planetary
mass is needed for accurate atmospheric characterization of
small rocky planets. When the planetary mass is known within
10% uncertainty, the retrievals successfully identify the
background gas and constrain atmospheric parameters, even
in the presence of clouds. However, with less constrained or

unknown mass, we observed significant biases in the retrievals,
particularly in the misidentification of the dominant atmo-
spheric gas. For instance, nitrogen was incorrectly replaced by
oxygen or carbon dioxide, which could lead to incorrect
assessments of planetary habitability and biosignatures.
These biases arise because uncertainties in planetary mass

affect the determination of surface gravity and atmospheric
scale height, leading the retrieval algorithm to compensate by
adjusting the atmospheric composition. While some informa-
tion about the planetary mass can be inferred from the reflected
spectrum alone, it is insufficient to accurately constrain the
mass and the bulk atmospheric composition without additional
prior information.
In this work, we did not explore the impact of mass

uncertainty on characterizing larger planets (e.g., super-Earths
versus sub-Neptunes), nor higher spectral resolution or signal-
to-noise ratios. Nonetheless, our simulations highlight the
importance of achieving precise mass measurements of small
terrestrial exoplanets—ideally within 10% uncertainty—
through methods such as Extreme Precision Radial Velocity
or astrometry, especially in the context of missions like the
Habitable Worlds Observatory. Accurate mass constraints are
important to reliably characterize exoplanet atmospheres and to
correctly interpret potential biosignatures. Future observational
strategies should prioritize obtaining accurate mass measure-
ments to improve the characterization of exoplanetary atmo-
spheres and to better assess their potential habitability.
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Appendix
Noise Model

There are multiple sources of noise in a coronagraphic image
or spectrum including detector noise, host star residual speckles
after point-spread function (PSF) subtraction, and shot noise
from the planet, local zodi, exozodi, and the host star raw
speckles. The relative strengths of these various noise sources
will depend on the instrument architecture and the observa-
tional target. For example, coronagraphs require active wave
front control and therefore achieve higher performance on
brighter host stars; and planet radius, orbital distance, albedo,
and host star type all contribute to the observed flux ratio.
The noise model used for this study represents a simplistic

limiting case with very good starlight suppression and low
detector noise, in which photon noise from the astrophysical
scene dominates. We follow the analytic prescription outlined
in T. D. Robinson et al. (2016). We can assume exozodi
dominate over local zodi, and neglect local zodi. Dark current

Figure 10. Posterior distribution functions for planetary mass, radius, surface
pressure, and particle size for the Archean Earth–like scenario. The surface
pressure is a proxy for the atmospheric gases collectively as the sum of their
partial pressure is equal to the surface pressure.
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is also ignored, assuming that a future exoplanet imaging
mission will have good enough detectors that the dark current
will be lower than photon noise at all wavelengths, as is already
the case for the Roman CGI in broadband imaging (P. Morris-
sey et al. 2023). The speckle residuals are likewise neglected.
This leaves the shot noise from the planet and the exozodi as
the only remaining noise sources.

Future mission concept studies would use more realistic
noise models that are representative of the chosen architecture.
However, as we normalize the noise to the desired SNR, the
main difference between this model and the “full” model is the
color of the noise, rather than the magnitude. Running the
retrieval with different colors of noise was outside the scope of
this research.

The planet's photoelectron count rate at the detector within
an aperture is:

( )l
p l l l= D µ Dl l l lc F

hc

D
f F

2
, A1p p ap p, ,

2

,⎛
⎝

⎞
⎠

where l
hc

is the photon energy, Δλ is the bandwidth of the filter
or spectral resolution element, D is the telescope diameter, and
l is the effective system throughput (detector quantum

efficiency and optical throughput), and fap is the fraction of
planet light within the aperture (sometimes also called the “core
throughput”; in the coronagraphic case this also accounts for
losses due to the coronagraph masks and wave front control).
We assume l and fap are wavelength independent.

For extended surface brightness sources, such as exozodi,
the count rate is

( )l
p l l l= D W µ Dl l l lc F

hc

D
F

2
, A2ez ez s, ,

2

,
3⎛

⎝
⎞
⎠

where Ω is the aperture size. In this case we assume an aperture
proportional to the PSF width, therefore Ω ∝ λ2. We assume
exozodi are gray (Fez,λ ∝ Fs,λ).

To calculate the total noise, we combine the noise sources
with appropriate weights. The total count rate for photon noise
is given by

( )a= +l l lc c c . A3r p ez, , ,

The SNR for a given exposure time can then be calculated as

( )
( )

a
=

+
l

l l

c t

c c t
SNR . A4

p

p ez

, exp

, , exp

Substituting the definitions for each term allows us to
investigate the proportionality with wavelength and spectral
bin width:

( )b
l l

a l
=

D
+

l
l l

F
F F

SNR A5p
p s

,
, ,

2

α and β are weights chosen to scale the noise terms and the
overall SNR to the desired values. According to R. Hu et al.
(2021), the flux of the exozodi should be roughly half that of
the planet at 0.7 μm, assuming an Earthlike planet in the HZ of
an FGK star at 6 pc, and assuming that the system has three
zodi (as is the assumption adopted by various mission concept
studies and yield analyses (S. Seager et al. 2019; C. C. Stark
et al. 2019; B. S. Gaudi et al. 2020)). Thus α is chosen such
that Fp,λ = 2αFs,λλ

2 at 0.75 μm. β is chosen to scale the noise

such that an SNR of 20 is achieved at 0.75 μm. This
wavelength was chosen as it is on the continuum for all three
scenarios analyzed in this paper, and it is next to the O2

absorption feature at 0.76 μm.
The resulting SNR versus wavelength for the modern and

Archean Earth scenarios are shown in Figure 11.
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