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Self-similar polytropic champagne flows in H II regions
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ABSTRACT

We explore large-scale hydrodynamics of H II regions for various self-similar shock flows of
a polytropic gas cloud under self-gravity and with quasi-spherical symmetry. We formulate
cloud dynamics by invoking specific entropy conservation along streamlines and obtain global
self-similar ‘champagne flows’ for a conventional polytropic gas with shocks as a subclass.
Molecular cloud cores are ionized and heated to high temperatures after the onset of nuclear
burning of a central protostar. We model subsequent evolutionary processes in several ways and
construct possible self-similar shock flow solutions. We may neglect the mass and gravity of
the central protostar. The ionization and heating of the surrounding medium drive outflows in
the inner cloud core and a shock travels outwards, leading to the so-called ‘champagne phase’
with an expanding outer cloud envelope. Complementarily, we also consider the expansion
of a central cavity around the centre. As the inner cloud expands plausibly due to powerful
stellar winds, a cavity (i.e. ‘void’ or ‘bubble’) can be created around the centre, and when
the cavity becomes sufficiently large, one may neglect the gravity of the central protostar. We
thus present self-similar shock solutions for ‘champagne flows’ with an expanding central
void. We compare our solutions with isothermal solutions and find that the generalization
to the polytropic regime brings about significant differences of the gas dynamics, especially
for cases of n < 1, where n is a key scaling index in the self-similar transformation. We
also compare our global polytropic self-similar solutions with numerical simulations on the
expansion of H II regions. We further explore other possible dynamic evolutions of H II regions
after the initiation of nuclear burning of the central protostar, for example asymptotic inflows
or contractions far from the cloud centre and the ongoing infall around a central protostar. In
particular, it is possible to use the downstream free-fall solution with shocks to describe the
dynamic evolution of H II regions shortly after the nascence of the central protostar. We also
give an analysis on the invariant form of self-similar polytropic flows by ignoring self-gravity.

Key words: hydrodynamics – shock waves – stars: formation – stars: winds, outflows – ISM:
clouds – H II regions.

1 IN T RO D U C T I O N

The compact (scale sizes of ∼0.1–1 pc) and ultracompact (UC;
scale sizes �0.15 pc) H II regions are associated with massive
OB stars (e.g. Habing & Israel 1979). The UC H II region stage
(�105 yr) stands for a substantial part of the relatively short main-
sequence lifetimes of OB stars. Several radio surveys (e.g. Wood &
Churchwell 1989; Fish 1993; Kurtz, Churchwell & Wood 1994) ob-
served expansions of luminous H II regions with shock signatures.
‘champagne flow’ models (e.g. Tenorio-Tagle 1979; Tenorio-Tagle,
Yorke & Bodenheimer 1979; Yorke 1986) successfully explain the
expansion of H II regions by considering a protostar formed in a

�E-mail: hu-ry07@mails.tsinghua.edu.cn (R-YH); louyq@tsinghua.edu.cn
(Y-QL)

cloud core, photoionizing and heating the cloud, as well as driving
a shock that accelerates the ionized gas to expand rapidly. Observa-
tions tend to support ‘champagne flow’ models, such as Lumsden
& Hoare (1999) for UC H II regions G29.96−0.02 and Barriault
& Joncas (2007) for compact H II region Sh 2−158. Champagne
flows in clouds of larger scales have also been identified, such as
Foster et al. (2007) for the dense Galactic H II region G84.9+0.5 and
Maheswar et al. (2007) for the classical H II region S236 in the clus-
ter of OB stars NGC 1893.

Tenorio-Tagle (1979) classified champagne flows into cases R
and D. For the case R, the ionization front (IF) created by the
emergence of the central massive protostar rapidly breaks out from
the dense cloud and leaves the gas behind it fully ionized. For
the case D, the IF is ‘trapped’ inside a cloud, and produces an
expanding H II region within a cloud. In the formation phase of
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H II regions, whether the IF is R type or D type depends on the
initial grain opacity, the ionizing flux and the initial density and
the size of a cloud (Franco, Tenorio-Tagle & Bodenheimer 1990).
In the expansion phase, H II regions with an initial mass density
profile ρ ∝ r−l and l > 3/2 are ‘density bounded’, where ρ is the
mass density and r is the radius (see e.g. Osterbrock 1989; Franco
et al. 1990).1 It is also possible that the D-type IF changes to a weak
R-type IF when l > 3/2. In such cases, the fully ionized cloud begins
to expand and an outgoing shock forms. This is referred to as the
‘champagne phase’ (Bodenheimer, Tenorio-Tagle & Yorke 1979).
Notably if a shock front encounters a steep negative density gradient,
for example, the edge of a cloud, asymmetric ‘champagne flows’
may occur, as observed by Lumsden & Hoare (1999). According to
the Very Large Array (VLA) survey by Wood & Churchwell (1989),
16 per cent of H II regions bear cometary appearance. Arthur &
Hoare (2006) numerically simulated ‘cometary champagne flows’.
If l < 3/2, the H II region is ‘ionization bounded’, e.g. the ultraviolet
(UV) radiation is trapped within a finite radius (Osterbrock 1989).
In such cases, the ionized region should expand as t4/(7−2l), driving
a shock that would accelerate the ambient medium into a thin shell
(Franco et al. 1990). In this paper, we focus on the champagne phase
of a cloud assumed to be ‘density bounded’, implying l > 3/2. We
also assume that the cloud is fully ionized shortly after the onset of
nuclear burning of a central massive protostar.

Shu et al. (2002) (also Tsai & Hsu 1995) investigated isothermal
‘champagne flows’ under spherical symmetry in the self-similar
framework. By neglecting the gravity of the central massive proto-
star and assuming that a cloud initially stays at rest and gets heated
by the luminous massive protostar to a uniform high temperature,
one may obtain self-similar expansion solutions connected with
isothermal outflows with shocks; this corresponds to a ‘champagne
flow’ in a highly idealized setting. The initial isothermal mass den-
sity profile scales as ρ ∝ r−2. In addition, for molecular clouds with
other possible initial mass density profiles, Shu et al. (2002) also
ignored the self-gravity of a cloud completely and proposed another
self-similar transformation, referred to as the ‘invariant form’, and
obtained solutions for cases with an initial mass density profile
ρ ∝ r−l , where the power-law index l is not necessarily equal to
2. In general, it is not realistic to suppose molecular clouds to be
isothermal in many astrophysical situations. One specific example
of cloud temperature measurement of a UC H II region NGC 6334F
undergoing a ‘champagne flow’ reveals a conspicuous temperature
gradient from the centre to the edge (e.g. De Buizer et al. 2002).

Energy sources and plasma coolings in molecular clouds are not
completely known. We then approximate the energy equation by a
general polytropic equation of state p = κ(r, t) ργ , where p is the
thermal gas pressure, γ is the polytropic index and the proportional
coefficient κ(r, t) (related to the specific entropy) depends on radius
r and time t in general. Setting κ as a global constant, the equation of
state simply becomes a conventional polytropic one. By adjusting γ ,
we may model various situations of H II regions in molecular clouds.
For example, for γ = 1 and a constant κ , our solutions reduce to
isothermal ones. Since ‘champagne flows’ in a polytropic molecular
cloud has not been studied, we would generalize the isothermal
analyses of Tsai & Hsu (1995) and of Shu et al. (2002) to a polytropic
description of self-similar ‘champagne flows’. We shall provide
the basic formulation with the most general polytropic equation of
state (i.e. specific entropy conservation along streamlines; Wang &

1 In Franco et al. (1990), the power-law index of the mass density profile
is denoted by w instead of l which is adopted here to avoid notational
confusions.

Lou 2008; Lou & Hu 2008) and present global ‘champagne flow’
solutions with shocks for a conventional polytropic gas.

Shu et al. (2002) introduced the Bondi–Parker radius as a measure
for the effective distance of the central gravity. The Bondi–Parker
radius is defined by rBP = GM∗/(2a2), where M∗ is the mass of the
central gravity source and a is the sound speed of the surrounding
medium, which is a constant for an isothermal cloud. The mass
originally residing within a radius r0 is dumped into the star during
the star formation. After the star formation, as the surrounding cloud
becomes much hotter with a higher sound speed, the Bondi–Parker
radius becomes much less than r0. Therefore for the gas in r > r0,
the gravity of the central massive star may be neglected. This rea-
soning naturally leads to the possible existence of a cavity around
the centre of a molecular cloud, which we refer to as ‘void’ or ‘bub-
ble’. At t = 0, the void boundary is at r = r0. For an expanding
cloud, the central void also expands. Indeed, a stellar wind drives
also a principal shock and is capable of sweeping the surrounding
ionized gas into an expanding shell. Wood & Churchwell (1989)
identified central cavities in the shell or cometary UC H II regions,
which are thought to be supported by stellar winds and radiation
pressures in their survey. Lumsden & Hoare (1999) suggested a
‘champagne flow’ surrounding a hot stellar wind bubble to interpret
observations of G29.96−0.02. Comerón (1997) numerically simu-
lated the dynamic evolution of wind-driven H II regions with strong
density gradients and found that features of classical champagne
model are not substantially changed, except that the compression
of the swept-up matter would, rapidly and particularly in densest
cases, lead to the trapping of the IF and inhibit the champagne
phase. Therefore, the dynamic evolution of void expansion repre-
sents an important physical aspect of ‘champagne flows’. Chevalier
(1997) studied the isothermal self-similar evolution of the plane-
tary nebulae with the consideration of fast winds blowing off the
slow winds. The contact discontinuity between the fast winds and
the slow winds suggested by Chevalier (1997) corresponds to the
concept of void boundary of this work. Recently, Lou & Hu (2008)
explore self-similar solutions for voids in a more general context.
In this paper, we construct self-similar solutions for ‘champagne
flows’ with central voids in self-similar expansion. The inclusion of
a central void not only makes our polytropic model more realistic,
but also allows us to take into account stellar wind bubbles.

We outline the model formulation of a general polytropic gas and
present self-similar asymptotic solutions in Section 2 and construct
global solutions of ‘champagne flows’ in Section 3. Section 4 pro-
vides solutions of self-similar ‘champagne flows’ with an expanding
central void. In section 5, we discuss behaviours and astrophysical
applications of our novel solutions, and suggest other plausible
forms of H II regions. Details of an invariant form of self-similar so-
lutions in a conventional polytropic gas with the self-gravity ignored
are summarized in Appendix A.

2 SELF-SI MI LAR POLYTRO PI C FLOWS

2.1 General polytropic formulation

Dynamic evolution of a quasi-spherical general polytropic gas under
self-gravity can be described by non-linear hydrodynamic equations
in spherical polar coordinates (r, θ , φ):

∂ρ

∂t
+ 1

r2

∂

∂r
(r2ρu) = 0, (1)

∂M

∂t
+ u

∂M

∂r
= 0, (2)
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∂M

∂r
= 4πr2ρ, (3)

ρ

(
∂u

∂t
+ u

∂u

∂r

)
= −∂p

∂r
− GMρ

r2
, (4)

p = κ(r, t)ργ , (5)

where ρ(r, t) is the mass density, u(r, t) is the bulk gas radial flow
velocity, M(r, t) is the enclosed mass within r at time t, p is the ther-
mal pressure, G = 6.67 × 10−8 dyne cm2 g−2 is the gravity constant.
Equations (1)–(3) describe the mass conservation, equation (4) is
the radial momentum equation and equation (5) is the general poly-
tropic equation of state, in which γ is the polytropic index and the
coefficient κ directly related to the ‘specific entropy’ depends on
r and t. For a conventional polytropic gas, κ is a global constant
in space and time. More generally, we require the conservation of
‘specific entropy’ along streamlines, namely(

∂

∂t
+ u

∂

∂r

)(
ln

p

ργ

)
= 0. (6)

This set of equations is the same as those of Wang & Lou (2008)
but without a completely random magnetic field. We should require
γ > 1 to ensure the positiveness of the gas enthalpy.

To reduce the non-linear partial differential equations (PDEs) to
ordinary differential equations (ODEs) for self-similar flows, we
introduce the following transformation:

r = k1/2tnx, u = k1/2tn−1v, ρ = α

4πGt2
,

p = kt2n−4

4πG
β, M = k3/2t3n−2m

(3n − 2)G
, (7)

where x is a dimensionless independent self-similar variable, k is a
dimensional parameter related to the polytropic sound speed making
x dimensionless, v(x), α(x), β(x), m(x) are dimensionless reduced
dependent variables of x only and n is a key scaling index which
controls the relation between r and x as well as various scalings
of reduced dependent variables. We will see in the following that
n scales the initial density profile of the gas. We refer to
v(x), α(x), β(x) and m(x) as the reduced radial flow speed, mass
density, thermal pressure and enclosed mass, respectively. Trans-
formation (7) is identical with that of Lou & Wang (2006).

By performing self-similar transformation (7) in equations (1)–
(6) and introducing parameter q ≡ 2(n + γ − 2)/(3n − 2), we
obtain two integral relations:

m = αx2(nx − v), (8)

β = αγ mq, (9)

where there is no loss of generality to set the proportional coefficient
(i.e. an integration constant) equal to unity in integral (9) for q �=
2/3 or γ �= 4/3 (Wang & Lou 2008). The special case of γ = 4/3
corresponds to a relativistically hot gas as studied by Goldreich &
Weber (1980) and Lou & Cao (2008). By setting q = 0, the general
polytropic formulation reduces to the conventional polytropic case
of a global constant κ (e.g. Suto & Silk 1988; Lou & Gao 2006; Lou
& Wang 2006; Lou, Jiang & Jin 2008) with n + γ = 2. According
to expression M(r, t) for the enclosed mass in transformation (7),
we require 3n − 2 > 0 and nx − v > 0 to ensure a positive enclosed
mass. The inequality 3n − 2 > 0 will re-appear later for a class of
asymptotic solutions at large x. By equation (8), we emphasize that
for nx − v = 0 at a certain x∗, the enclosed mass within x∗ becomes
zero; we refer to this as a central void and x∗ is the independent

similarity variable marking the void boundary which expands with
time t in a self-similar manner. The relation v = nx shows the speed
of the void boundary is the same as the speed of the gas on the void
boundary, e.g. the contact discontinuity (Chevalier 1997).

Combining all reduced equations above, we readily derive two
coupled non-linear ODEs for α′ and v′ as

X (x, α, v)α′ = A(x, α, v), X (x, α, v)v′ = V(x, α, v), (10)

where functionals X , A and V are defined by

X (x, α, v) ≡ [2 − n + (3n − 2)q/2]α1−n+3nq/2

× x2q (nx − v)q − (nx − v)2,

A(x, α, v) ≡ 2
x − v

x
α
[
qα1−n+3nq/2x2q (nx − v)q−1

+ (nx − v)
]

− α

[
(n − 1)v + nx − v

3n − 2
α

+ qα1−n+3nq/2x2q−1(nx − v)q−1(3nx − 2v)

]
,

V(x, α, v) ≡ 2
x − v

x
α

(
2 − n + 3n

2
q

)
α−n+3nq/2x2q

× (nx − v)q − (nx − v)

[
(n − 1)v + nx − v

3n − 2
α

+ qα1−n+3nq/2x2q−1(nx − v)q−1(3nx − 2v)

]
. (11)

For a conventional polytropic gas of constant κ with n + γ = 2, we
simply set q = 0 in equation (11) to derive

α′

α2
= (n − 1)v + [(nx − v)α/(3n − 2)] − 2(x − v)(nx − v)/x

α(nx − v)2 − γαγ
,

(12)

v′ =
(n − 1)αv(nx − v) + [(nx − v)2/(3n − 2)]α2 − 2γαγ (x − v)/x

α(nx − v)2 − γαγ
.

(13)

Up to this point, our basic self-similar hydrodynamic formulation is
the same as that of Lou & Wang (2006) and of Wang & Lou (2008)
without a random magnetic field.

For energy conservation, we define the energy density ε and the
energy flux density J as follows:

ε = ρu2

2
− GMρ

r
+ i

2
p, (14)

J = ρu

(
u2

2
− GM

r
+ i

2

γp

ρ

)
, (15)

where ε is the energy density, J is the energy flux density and i is
the degree of freedom of an individual gas particle. The three terms
in expressions (14) and (15) correspond to densities of the kinetic
energy, the gravitational energy and the internal energy, respectively.
With equations (1)–(5) and a globally constant κ , we derive

∂ε

∂t
+ 1

r2

∂

∂r
(r2J ) = P ≡ u

∂p

∂r

[
i

2
(γ − 1) − 1

]
(16)

for energy conservation, where P represents the net energy input.
If the gas expands adiabatically or γ = (i + 2)/i, then P = 0.
Whether the gas locally gains or loses energy depends not only on
the difference between γ and (i + 2)/i, but also on the signs of
∂p/∂r and u.
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2.2 Self-similar solutions

An exact globally static solution known as the singular polytropic
sphere (SPS) takes the following form of

v = 0, α =
[

n2−q

2(2 − n)(3n − 2)

]−1/(n−3nq/2)

x−2/n. (17)

This is a straightforward generalization of the singular isothermal
sphere (SIS; e.g. Shu 1977) and of the SPS for a conventional
polytropic gas with q = 0 (Lou & Gao 2006; Lou & Wang 2006).
For a general SPS here, the mass density profile scales as ρ ∝ r−2/n,
independent of q parameter.

For large x, the asymptotic flow behaviour is

v =
[

− nA

(3n − 2)
+ 2(2 − n)nq−1A1−n+3nq/2

]
x1−2/n

+ Bx1−1/n + · · · , (18)

α = Ax−2/n + · · · , (19)

where A > 0 and B are two constant parameters. As x → +∞,
the mass density profile scales the same way as SPS (17) above,
independent of q parameter to the leading order. Since x → +∞
means t → 0+, the asymptotic solution at large x is thus equivalent
to initial conditions of the system at a finite r. Coefficients A and B
are referred to as the mass and velocity parameters, respectively. A
global solution with asymptotic behaviour (18) and (19) represents
a fluid whose density profile scales initially similar to that of a
SPS. Thus, by varying the scaling index n or the polytropic index
γ , we are able to model the initial density profile with an index
l = −2/n. Furthermore, as a physical requirement for plausible
similarity solutions of our polytropic flow, both v(x) and α(x) should
remain finite or tend to zero at large x. Hence, in cases of 2/3 <

n < 1, corresponding to 2 < l < 3, A and B are fairly arbitrary, while
in cases of 1 � n < 2 (general polytropic), corresponding to 1 <

l � 2, B should vanish for a finite radial flow velocity at large x.
In the regime of x → 0+, there exists a free-fall asymptotic

solutions for which the gravity is virtually the only force in action,
and the radial velocity and the mass density profile both diverge in
the limit of x → 0+. To the leading order, the free-fall asymptotic
solution takes the form of

α(x) =
[

(3n − 2)m(0)

2x3

]1/2

, (20)

v(x) = −
[

2m(0)

(3n − 2)x

]1/2

, (21)

where constant m(0) represents an increasing central point mass.
Such solutions were first found by Shu (1977) in the isothermal
case, and were generalized to the conventional polytropic case
(Cheng 1978; Lou & Gao 2006; Lou & Wang 2006) and to the
general polytropic case with a random magnetic field by Wang &
Lou (2008). The asymptotic form does not depend on q. The va-
lidity of such solutions requires n > 2/3 and γ < 5/3; the last
inequality appears as a result of comparing various terms in series
expansions.

Another exact global solution, known as the Einstein–de Sitter
(EdS) solution, exists in two cases of q = 0 and q = 2/3. The EdS
solution for a conventional polytropic gas of q = 0 reads as

v = 2

3
x, α = 2

3
, m = 2(n − 2/3)

3
x3 (22)

(Lou & Wang 2006); for q = 2/3 and thus γ = 4/3, this global EdS
solution without and with a random magnetic field takes a slightly
different form (Lou & Cao 2008). With shocks, EdS solutions can
be used to construct polytropic ‘champagne flows’ with various
upstream dynamic behaviours.

From now on, we focus on the conventional polytropic case of
q = 0 with n + γ = 2. To simulate ‘champagne flows’ in H II regions
in star-forming clouds, we solve coupled non-linear ODEs (12) and
(13) subject to the inner boundary conditions at x = 0, namely,

α = α0, v = 0, (23)

where α0 is a constant. A series expansion yields the Larson–
Penston (LP) type of asymptotic solutions at small x in the form
of

v = 2

3
x − α

(1−γ )
0

15γ

(
α0 − 2

3

) (
n − 2

3

)
x3 + · · · , (24)

α = α0 − α
(2−γ )
0

6γ

(
α0 − 2

3

)
x2 + · · · . (25)

The isothermal counterpart of this polytropic series solution was
obtained earlier (Larson 1969a,b; Penston 1969a,b; Hunter 1977;
Shu et al. 2002) with n = 1 and γ = 1. Such LP-type solutions may
be utilized to construct champagne flows, if we ignore the central
protostar as an approximation and assume the surrounding gas to
be initially static (e.g. Shu et al. 2002). Physically, as a result of
the gravity of the central protostar, the gas infall towards the very
central region may not stop, even when the protostar starts to shine
and the ‘champagne phase expansion’ has occurred in the outer
cloud envelope due to the photoionization and UV heating. Thus
with central free falls (20) and (21) as the downstream side of a
shock, we can also construct global solutions for the dynamics of
H II regions surrounding a nascent central massive protostar which
involves free-fall materials. We can take LP-type or EdS solutions
as the downstream side of a shock and model classical champagne
flows for a conventional polytropic gas. We shall come to the pos-
sible scenario of inner free-fall solutions with an outer champagne
flow.

With the restriction n + γ = 2 for a conventional polytropic
gas, the initial density profile with the scaling index n is directly
linked to the polytropic index γ , depending on the energy exchange
process in the gas (see equation 16). For a general polytropic gas
with q �= 0 in contrast, the scaling index n and polytropic index γ

can be independently specified; in particular, we can have γ > 1
and n ≥ 1 (this is impossible for a conventional polytropic gas).
On the other hand, the initial mass density profile is affected by the
star formation or other energetic processes before t = 0. Hence for
l = −2/n, we postulate that the energy exchange process remains
largely unchanged after the protostar formation at t = 0. This is
plausible because the IF travels relatively fast to large distances in
a cloud during the ‘champagne flow’ phase. Our general polytropic
model allows inequality 2/3 < n < 2, corresponding to 1 < l < 3,
which covers so far the entire range of initial mass density profiles
of H II regions. This range of mass density distribution has been
obtained from radio observations of cloud fragments and isolated
dark clouds (e.g. Arquilla & Goldsmith 1985; Myers 1985).

Franco et al. (1990) reveals that the initial mass density profile
index 3/2 < l < 3 (i.e. 2/3 < n < 4/3 in a polytropic model)
leads to ‘champagne flows’ in clouds with weak shocks; and l >

3 corresponds to a ‘champagne flow’ with strong and accelerating
shocks. We then require parameter n within the range 2/3 < n
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Polytropic shock flows in H II regions 1623

< 4/3, as we assume the cloud is ‘density bounded’. With such
range of parameter, we provide solutions of ‘champagne flow’ with
shocks. We emphasize in particular that there is one more degree of
freedom to choose the velocity parameter B in asymptotic solution
(18) and (19) in polytropic cases with 2/3 < n < 1 (i.e. 2 <

l < 3) than in the isothermal case. This leads to major differences
of the polytropic champagne flow solutions we find as compared
with those isothermal solutions of Tsai & Hsu (1995) and Shu et al.
(2002). Franco et al. (2000) have recently argued from the radio
continuum spectra that UC H II regions have initial density gradients
with 2 � l � 3; so we would consider primarily the n range of
2/3 < n < 1 or 2 < l < 3. In summary, molecular clouds with
3/2 < l < 3 have ‘champagne flows’ in self-similar manner, while
those clouds with l � 3 have ‘champagne flows’ without similarity.
For clouds with 2 < l < 3, there is more than one parameter to
specify initial dynamic flows.

Finally, we need to include shocks at proper places in LP-type
solutions, EdS solutions or free-fall solutions to match with appro-
priate asymptotic solutions at large x to determine relevant coef-
ficients. The shock jump conditions between the downstream and
upstream variables are determined by the mass conservation, the
radial momentum conservation and the energy conservation. With
these three equations for shock conditions, one can determine up-
stream self-similar variables (xsu, αu, vu) uniquely from downstream
self-similar variables (xsd, αd, vd) or vice versa. The two subscripts
d and u here denote the downstream and upstream variables, respec-
tively. Detailed formulation and procedure of self-similar shocks
can be found in section 5 of Lou & Wang (2006). All solutions in
this paper are obtained by solving coupled non-linear ODEs (12)
and (13) for a conventional polytropic gas with n + γ = 2.

3 PO LY T RO P I C C H A M PAG N E F L OW S

In cases of n < 1, there is a range of shock positions (or speeds) for
a specified downstream solution with a fixed density at the centre
α0 at x = 0, corresponding to different asymptotic flow behaviours
at large x on the upstream side. We now discuss two situations: first,
for cases with a fixed value of α0, we adjust shock positions for a
specified LP-type solution and observe the relation between shock
positions and asymptotic flow behaviours at large x. Secondly, for
cases with a fixed shock position, we alter the value of α0 and
examine the variation of upstream conditions. It is expected to set
certain limits on relevant parameters for polytropic ‘champagne
flows’ to exist. As a series of examples, we choose the scaling index
n = 0.9. Numerical explorations have also been performed for cases
of n = 0.7 and 0.8 and the results are qualitatively similar.

3.1 Cases with a fixed α0 value

With a fixed value of α0 for x → 0+, one can uniquely determine
a LP-type solution by a standard numerical integration. Such a LP-
type solution will encounter the sonic critical curve at a certain
xmax uniquely corresponding to α0. It is natural to consider possi-
ble hydrodynamic shock positions xsd < xmax on the downstream
side of shock front. One such example of n = 0.9 and α0 = 1 is
shown in Fig. 1 with relevant parameters summarized in Table 1. To
model ‘champagne flows’ with outward expansions at large radii in
molecular clouds, we provide the following analysis. In principle,
there are two other conditions giving rise to two minima of xsd in
order to obtain an outflow in the upstream side of a shock. First, our
extensive numerical explorations reveal that there exists a xmin1 and
for xsd < xmin1, the upstream shock position xsu becomes complex
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Figure 1. The reduced mass density α(x) (top) and the reduced radial flow
velocity v(x) (bottom) for global ‘champagne flow’ solutions in cases with
n = 0.9 (thus γ = 1.1) and α0 = 1. In both panels the dashed curve represents
the sonic critical curve and in the bottom panel the dotted line is v = 0. The
downstream solution is connected with various upstream solutions with light
solid curves. The downstream solution is integrated numerically from x →
0+ with a LP-type solution. In both panels, the upstream solutions from
top to bottom correspond to xsd = 3, 2.923, 2.773, 2.623, 2.473, 2.287, 2.2
and 2, respectively. We note that the upstream solution with xsd = 2.287
corresponds to a breeze. Relevant parameters are summarized in Table 1.

Table 1. Data parameters of global polytropic ‘champagne flow’ solutions
in cases with n = 0.9 and α0 = 1.

A B xsd αd vd xsu αu vu

0.9902 −0.7699 2 0.8416 1.3019 2.0693 0.2005 −0.3012
1.3501 −0.2267 2.2 0.8172 1.4266 2.2446 0.2404 0.1004
1.5357 0 2.2869 0.8068 1.4805 2.3234 0.2586 0.2599
2.0109 0.4767 2.4732 0.7848 1.5956 2.4964 0.2993 0.5789
2.474 0.8577 2.6232 0.7678 1.688 2.6387 0.3336 0.8172
3.0224 1.2416 2.7731 0.7516 1.7803 2.7832 0.369 1.0425
3.6696 1.6323 2.9231 0.7363 1.8728 2.9292 0.4054 1.2568
4.0455 1.8367 3 0.729 1.9204 3.0047 0.4243 1.3629

by the shock conditions. This only happens when we attempt to
obtain upstream variables from downstream variables. For a real
xsu, downstream variables (xsd, αd, vd) should satisfy

(1 − γ )αγ−1
d + 2(nxsd − vd)2 > 0. (26)

For γ < 1 (unphysical) and γ = 1, inequality (26) is readily
satisfied; for γ > 1 or n < 1, this condition does not always hold.
Algebraic manipulations give the downstream Mach number in the
shock reference framework Md as

M2
d = (nxsd − vd)2

γα
γ−1
d

. (27)

Inequality (26) imposed on a subsonic downstream Mach number
is 1 > M2

d > (γ − 1)/(2γ ). The downstream Mach number and
the upstream Mach number is related by

M2
d = 2 + (γ − 1)M2

u

2γM2
u − (γ − 1)

. (28)

This relation was provided by Lou & Cao (2008) for a relativistically
hot gas and is proven valid in our model consideration. With the
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1624 R.-Y. Hu and Y.-Q. Lou

possible range of upstream Mach number 1 < M2
u < +∞, we

then have the limit on Md shown above. As we integrate LP or
EdS solutions from x = 0 with α = α0 and v = 0, solutions do not
satisfy inequality (26) when x remains sufficiently small and xmin1

is the minimum value of x satisfying (26). This value of xmin1 is
uniquely determined by the α0 value. Therefore, for a fixed LP-type
solution around small x, polytropic shocks can be constructed with
a downstream shock in the range of xmin1 < xsd < xmax, and across
such a shock, the LP-type solution at small x can be matched with
different asymptotic flows at large x.

Systematic numerical explorations reveal that the upstream ve-
locity increases monotonically with the increase of xsd, as shown by
the variation trend of the B parameter (see Table 1). There is thus
another critical value imposed on xsd, denoted by xmin2. For xsd >

xmin2, the upstream solution matches to an asymptotic solution at
large x in the form of (18) and (19) with B > 0, referred to as an
outflow. Complementarily with xsd < xmin2, the upstream solution
matches to an asymptotic solution with B < 0, referred to as an
inflow. As B varies continuously and monotonically with xsd, for
xsd = xmin2 the upstream solution corresponds to an asymptotic
solution with B = 0, which describes a breeze or a contraction
in association with ‘champagne flows’. According to asymptotic
expressions (18) and (19) with q = 0, the breeze or contraction
correspond to slow outward or inward flows. To obtain a breeze, we
need a mass parameter

A < As ≡
[

n2

2γ (3n − 2)

]−1/n

. (29)

For the specific case of A = As, either a breeze or a contraction re-
duces to SPS solution (17). With n < 1, there are three possibilities
in general. First, xmin1 > xmin2 for the allowed range to construct
shocks, the upstream solutions always correspond to outflows. Sec-
ondly, xmin1 < xmin2 for the allowed range to construct shocks, it is
possible to obtain outflows, inflows and breezes or contractions for
the upstream side. Thirdly, if any of xmin1 or xmin2 exceeds xmax, a
global champagne flow is not allowed. For the isothermal case of
n = 1, we may set B equal to zero; asymptotic breezes or contrac-
tions on the upstream side are allowed, and the only allowed value
of the downstream shock position is xsd = xmin2. Shu et al. (2002)
indicated that the isothermal shock position is uniquely determined
by the value of α0, which is consistent with our more general anal-
ysis here. The unique shock position found by Shu et al. (2002)
corresponds to the xmin2 above.

The conventional scenario for ‘champagne flows’ would require
the entire fluid to expand outward. Numerical simulations on ‘cham-
pagne flows’ (e.g. Tenorio-Tagle et al. 1986) assume that at t = 0+

the central star is formed and the surrounding cloud is initially at
rest. For t > 0+, the fluid is photoionized and heated by the UV ra-
diation from the central star and expands. In this scenario, we would
require an expanding upstream flow in order to model ‘champagne
flows’. However, since solutions with an asymptotic inflow or con-
traction as upstream part may also exist, the outer part of H II regions
can also have inward velocities. In fact, during the star formation
even some time after the star formation, the surrounding cloud may
continue to collapse towards the centre (e.g. Fatuzzo et al. 2004).
With the core nuclear burning of the central protostar, the surround-
ing gas is ionized and heated, and the inner part of the fluid starts
to expand, while the outer part continues to fall inwards. Those
solutions of the LP type as the downstream side of a shock and an
asymptotic inflow or contraction for the upstream side correspond

to this scenario just described; and such global solutions are referred
to as inner shock expansions in a collapsing envelope (ISECE).

For the case of n = 0.9 and α0 = 1, we have determined xmin1 =
0.95, xmin2 = 2.287 and xmax = 3; the shock range 2.287 < xsd < 3
gives sensible classical polytropic ‘champagne flow’ solutions and
0.95 < xsd < 2.287 gives the ISECE solutions as shown in Fig. 1.
For n = 0.9, we have As = 2.042; with xsd = xmin2 and A = 1.536 <

As, the asymptotic solution is a breeze and should be considered as
a classical champagne flow. Given other parameters the same, the
situation of A > As would give rise to an asymptotic contraction.
The shock location and shock speed can be determined once xsd

is specified. The dimensionless shock position in the self-similar
variable represents the shock strength and velocity in dimensional
form. The shock velocity reads drs/dt = nk

1/2
d xsd t n−1. The outgoing

shock slightly decelerates (for n slightly less than 1) and the shock
velocity is proportional to xsd.

As shown in Fig. 1 and Table 1, with increasing xsd, the upstream
variables at the shock front vu and αu increase, and the two param-
eters A and B of asymptotic solutions (18) and (19) also increase.
This is a fairly common feature, observed in all other cases that
we have studied numerically. Different shock positions match with
different asymptotic solutions at large x. Once A and B are spec-
ified, the shock position xsd is uniquely determined. As A is the
mass parameter and B is the velocity parameter, xsd, proportional
to the shock velocity and strength, is determined not only by initial
mass density but also by the initial motion. This differs from the
isothermal case when B = 0 with the mass parameter A determining
the shock behaviour. We expect a faster and stronger shock with a
higher initial speed.

We further identify two subtypes of such ISECE solutions: (i)
the upstream side has an outward velocity near the shock and an
asymptotic inward velocity far from the centre (e.g. solution with
xsd = 2.2 in Fig. 1); (ii) the upstream side has an inward velocity
everywhere (e.g. solution with xsd = 2 in Fig. 1). For the type
(i) solutions, there is a stagnation point xstg where the radial flow
velocity vanishes; for the solution with xsd = 2.2, xstg ∼ 3. With
self-similar transformation (7), this stagnation point rstg = k1/2 tnxstg

travels outward with time in a self-similar manner.
For ISECE solutions, we envision that such solutions correspond

to the situation where a star starts to burn, ionizing and heating the
surrounding medium as the gas falling continues. The gas infall
and collapse are indispensable in star formation. If the nascent star
ionizes the whole residual gas sufficiently fast, the outer gas may
still possess an inward momentum. A champagne shock runs into
the infall gas, deposits outward momentum and accelerates the outer
gas. If a shock is sufficiently strong, we expect type (i) solutions,
e.g. the gas immediately outside a shock flows outward, and the
stagnation point travels outward proportional to the self-similar
expansion of the shock. If a shock is sufficiently weak, we expect
type (ii) solutions, e.g. the gas flows inward outside the shock front.
This ISECE scenario is expected to occur in certain H II regions
(e.g. Fatuzzo, Adams & Myers 2004; Shen & Lou 2004).

3.2 Cases of a fixed dimensionless shock position

The variation of LP-type solutions with different α0 and the same xsd

is shown in Fig. 2. For α0 > 2/3, α decreases with increasing x while
for α0 < 2/3, α increases with increasing x. With a larger α0 the LP-
type solution encounters the sonic critical curve earlier; therefore α0

cannot be too large, otherwise the LP-type solution encounters the
sonic critical curve before reaching the pre-set shock position xsd.
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Polytropic shock flows in H II regions 1625

Figure 2. The reduced mass density α(x) (top) and the reduced radial flow
velocity v(x) (bottom) for global polytropic ‘champagne flow’ solutions in
cases n = 0.9 (thus γ = 1.1) and xsd = 3. In the top panel, the horizontal
dotted line stands for α = 0, separating the top panel into two parts; the
vertical scales in these parts are different. In the upper part α(x) is presented
linearly, while in the lower part log [α(x)] is presented. In the bottom panel,
the dotted line is the sonic critical curve. Shocks at x ∼ 3 as the discontinuity
in solutions are shown. The solid curves on the downstream side of shocks
are LP-type solutions with α0 = 0.5, 1, 1.5, 2 and 2.5 (from bottom to top
in the top panel and from top to bottom in the bottom panel). The solid
curves on the right show, respectively, the corresponding upstream solutions
approaching different asymptotic solutions at large x (from bottom to top
in the top panel and from bottom to top in the bottom panel). The dashed
curves on the downstream side of shocks are LP-type solutions with α0 =
10−5, 10−4, 10−3 and 10−2 (from bottom to top in the top panel and from
top to bottom in the bottom panel). The dashed curves on the right show,
respectively, the corresponding upstream solutions approaching different
asymptotic solutions at large x (from bottom to top in the top panel and from
top to bottom in the bottom panel). The thick solid curve in both panels
represents the solution with α0 = 0.04, which has the lowest upstream
speed and the minimum B at large x. Relevant parameters are summarized
in Table 2.

One case of n = 0.9 and xsd = 3 is shown in Fig. 2 with parameters
given in Table 2. Here, we have αsd < 2.5.

As shown in Fig. 2 and Table 2, with the increase of α0, the
upstream conditions at the shock front αu and the mass parameter
A of the asymptotic solution increases, but vu and B do not have a
steady trend. As α0 increases from 10−5 to 0.04, vu and B decrease,
while as α0 increases from 0.04 to 2.5, vu and B increase (see
Table 2). This shows that vu and B are correlated. The minimum

values of vu and B are associated with α0 = 0.04. Here we show
that with a prefixed downstream shock position xsd, it is possible
that neither breeze nor contraction solutions are allowed. With a xsd

as large as 3, all the asymptotic upstream solutions correspond to
outflows. In the isothermal analysis of Shu et al. (2002), the mass
parameter A tends to zero with α0 → 0+. In polytropic cases, we
obtain similar results. According to series expansions (24) and (25),
if setting α0 = 0 exactly, the integration gives a trivial solution of
α = 0.

Based on numerical explorations for α0 → 0+ in isothermal cases,
Shu et al. (2002) argued that the self-gravity may be neglected for
cases with small central density, and developed another self-similar
transformation, viz., the so-called invariant form, in order to model
the initial mass density profile other than that of a SIS (i.e. ρ ∝
r−2). The initial mass density profile ρ ∝ r−l , where index l does
not necessarily equal to 2, can be described by the invariant form
when the self-gravity is ignored. We perform a similar reduction
with the invariant self-similar transformation for a conventional
polytropic gas without the self-gravity (see Appendix A), and show
that with n �= 1 (i.e. non-isothermal cases), the power index l must be
equal to 2/n for a self-similar form. This mass density profile with a
scaling index l = 2/n is the same as that in a SPS and in asymptotic
solutions at large x. In summary, the freedom of choosing l in the
invariant form disappears for non-isothermal cases. From another
perspective, since the index n ranges in 2/3 < n < 4/3, self-similar
polytropic champagne flows can model the initial mass density
profile with 3/2 < l < 3. In other words, the objective to model the
initial density profile other than l = 2 is naturally fulfilled, without
the necessity of dropping the self-gravity. The clear advantage of
our polytropic approach is that the self-gravity is included in the
model consideration. Therefore, to apply our polytropic solutions,
α0 → 0+ is no longer required. From transformation (7), parameter
α0 is tightly linked with the central mass density ρ0 and time-scale
t, and should have different values in different situations. Therefore,
polytropic champagne flow solutions are adaptable to a much wider
range of astrophysical cloud systems. Moreover, the α0 → 0+ cases
in our polytropic framework can be approximated by a central ‘void’
as discussed in the following section. With a central ‘void’, we are
able to neglect the gravity of the central region where the density is
sufficiently low and still consider the self-gravity of the outer more
dense gas medium.

In the isothermal case of Shu et al. (2002), the solution in which
the outer part is a static SIS represents a limiting solution defin-
ing the maximum value of α0. In the polytropic cases with n =
0.9, we can also identify such a limit by requiring B = 0 for the
upstream asymptotic solutions, such that for a pre-set α0 the down-
stream shock position xsd is uniquely determined. A family of such
‘champagne flow’ solutions with asymptotic upstream breezes or
contractions is shown by solid curves in Fig. 3 with parameters sum-
marized in Table 3. With a gradual increase of α0, the upstream side
varies from outward breezes, to a SPS, and to an inward contraction;
this trend leads to a maximum α0 if we define an outward breeze
for classical ‘champagne flows’. Here, the critical value α0 = 3.13
for an upstream SPS corresponds to the upstream SIS limit in Shu
et al. (2002) (i.e. α0 = 7.9 in the isothermal case). Naturally, this
critical value depends on the choice of n. For α0 > 3.13, an upstream
asymptotic contraction or an ISECE solution appears (dashed curve
in Fig. 3). Thus, isothermal champagne flows form a special family
with B = 0 and n = 1, referred to as breeze champagne flows. With
2/3 < n < 1 or 2 < l < 3, there are many more physically possi-
ble champagne flows, for which the upstream side corresponds to
asymptotic outflows at large x. The physical meaning of this special
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1626 R.-Y. Hu and Y.-Q. Lou

Table 2. Data parameters of global polytropic ‘champagne flow’ solutions in cases with n = 0.9 and xsd = 3.

α0 A B xsd αd vd xsu αu vu

0.00 001 0.0 002 532 1.145 3 0.0001 2.3469 3.0609 0.000 030 184 1.5294
0.0 001 0.001 735 0.9499 3 0.0007 2.3152 3.064 0.0 001 993 1.3959
0.001 0.01 243 0.7205 3 0.0049 2.2821 3.0693 0.001 372 1.2353
0.01 0.0 912 0.4713 3 0.0358 2.2449 3.0746 0.009 752 1.0536
0.04 0.3 045 0.3899 3 0.1154 2.2135 3.0715 0.03 192 0.9641
0.5 2.4 053 1.1453 3 0.6048 2.0444 3.0197 0.2 556 1.1567
1 4.0 455 1.8367 3 0.729 1.9204 3.0047 0.4 244 1.3629
1.5 5.5 009 2.406 3 0.7512 1.8166 3.008 0.5 556 1.5059
2 6.9 587 2.9308 3 0.7414 1.7274 3 0.6 606 1.6083
2.5 8.5 684 3.4633 3 0.7588 1.562 2.8444 0.7 086 1.4913
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Figure 3. ‘Champagne flow’ solution with a LP-type downstream and the
upstream part as a breeze or contraction for n = 0.9 (thus γ = 1.1). The top
panel shows the density and the bottom panel shows the velocity. In both
panels the dotted curve is the sonic critical curve. The solutions are integrated
from α0 = 0.2209, 2/3, 1, 2, 3.13 and 5 (from bottom to top in the top panel
and from top to bottom in the bottom panel), and the downstream shock
positions xsd are carefully chosen to let the upstream solution correspond to
the asymptotic solutions with B = 0. Relevant parameters are summarized
in Table 3. For the solution with α0 = 3.13, the corresponding upstream
is a SPS. For α0 > 3.13, the upstream contracts (dashed curve), while for
α0 < 3.13, the upstream is a breeze.

solution whose upstream side is the outer part of a static SPS is
clear: the outer envelope of gas is initially in a hydrostatic equilib-
rium, and the expanding shock created by the UV photoionization
travels into the static envelope; on the downstream side of this ex-
panding shock, the gas is heated to high temperatures. As the static
SPS relies on the scaling parameter n or the polytropic index γ ,
we expect one single solution for a pre-set n. From Table 3 we see
clearly that with the increase of α0, the downstream shock position
to obtain a breeze in the upstream, or xmin2 decreases. Meanwhile,
numerical explorations suggest that xmin1 increases with increasing

Table 3. Parameters of global polytropic ‘champagne flow’ solutions with
n = 0.9 and upstream breeze or contraction (B = 0).

α0 A B xsd αd vd xsu αu vu

0.2209 0.7550 0 2.6250 0.3571 1.8473 2.6873 0.0990 0.5153
2/3 1.3240 0 2.3986 0.6667 1.5991 2.4419 0.2045 0.3407
1 1.5357 0 2.2869 0.8068 1.4805 2.3234 0.2586 0.2599
2 1.8643 0 2.0733 1.0783 1.2563 2.0996 0.3734 0.1069
3.13 2.0420 0 1.9264 1.2773 1.1036 1.9475 0.4643 0
5 2.1924 0 1.7706 1.5091 0.9429 1.7873 0.5746 −0.1163

α0. Hence we expect for a sufficiently large α0, xmin2 would become
less than xmin1 to forbid ISECE solutions.

4 SI MI LARI TY POLY TROPI C ‘CHAMPAG NE

FLOW S’ WI TH CENTRAL VO I DS

We now establish and analyse a new class of ‘champagne flow’
solutions with voids surrounding the centre. We extend solutions
from x = 0 to the dimensionless self-similar expanding boundary
x∗ of a void, inside of which there is no mass, i.e. m∗ = m(x∗) = 0. In
our notations, superscript∗ attached to variables indicates variables
on the void boundary x∗. By expression (8), we have v∗ = nx∗. The
void boundary conditions are

α = α∗, v = nx∗ at x = x∗. (30)

A Taylor series expansion to the first order around the void boundary
x = x∗ of ODEs (12) and (13) yields

v(x) = nx∗ + 2(1 − n)(x − x∗) + · · · , (31)

α(x) = α∗ + n(1 − n)

γ
(α∗)nx∗(x − x∗) + · · · . (32)

Series expansions (31) and (32) are conspicuously different from
series expansions (24) and (25). The proportional coefficient of the
asymptotic velocity is no longer 2/3 but depends on the scaling
index n. By translating the origin, the dynamic flow behaves dif-
ferently. For n < 2, solutions given by expression (31) are locally
above the line nx − v = 0, indicating a positive enclosed mass.
Numerical integrations reveal that the solutions are always above
the line nx − v = 0 thereafter. Here, we model a gas flow with a
central void in the presence of self-gravity and thermal pressure,
directly relevant to galactic subsystems such as H II regions.

One can readily obtain the downstream portion of ‘champagne
flow’ solutions by numerically integrating coupled non-linear ODEs
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Figure 4. The reduced mass density α(x) (top) and the reduced radial flow
velocity v(x) (bottom) for semicomplete ‘champagne flow’ solutions with
a central void inside x∗ = 1 in the case of n = 0.9 and density on the void
boundary α∗ = 5. In both panels, the dashed curve stands for the sonic
critical curve. In the bottom panel the dotted line stands for the line v = 0.
The solid curve on the upper left of the sonic critical curve is the downstream
void solution and the solid curves on the lower right of the sonic critical
curve are the corresponding upstream solutions with the downstream shock
position xsd = 1.7 (inflow), 1.818 (contraction) and 2 (outflow). In this case,
xmin2 ≈ 1.818 and xmin1 = 1.408. Numerical data about these solutions are
tabulated in Table 4.

(12) and (13) from the void boundary x∗ with asymptotic expan-
sions (31) and (32). All such void solutions encounter the sonic
critical curve, and the lower the value of α∗ is, the later (or at larger
x) the void solution encounters the sonic critical curve. In order to
match with asymptotic solutions of finite density and velocity at
large x, void solutions must either cross the critical curve smoothly
or connect to another branch of solutions via shocks. To model
‘champagne flows’, we need to construct shocks to obtain global
solutions. Global void solutions that cross the sonic critical curve
smoothly will be discussed in Lou & Hu (2008). We now present
the solutions for large and small α∗, respectively. A family of semi-
complete ‘champagne flow’ solutions with n = 0.9, void boundary
x∗ = 1 and α∗ = 5 is constructed by varying the self-similar shock
position as shown in Fig. 4. Complementarily, another family of
solutions with α∗ = 10−4 is also constructed and shown in Fig. 5.
Both outflow, inflow and breeze or contraction as the upstream side
are presented. Relevant parameters of these void ‘champagne flow’
solutions are summarized in Table 4.

Similar to no void cases, α decreases with increasing x for large
α∗, so the density on the void boundary is a local maximum (see

Table 4. Polytropic ‘champagne flow’ solutions with a central void inside x∗ = 1 in the case of n = 0.9.

α∗ A B xsd αd vd xsu αu vu

10−4 0.000 106 −0.3813 1.8 1.4 734 × 10−4 1.3322 1.9058 2.7 895 × 10−5 0.1058
10−4 0.000 191 0 2.068 1.8 377 × 10−4 1.5386 2.1442 4.2 673 × 10−5 0.4893
10−4 0.0 014 1.0833 3.088 0.000 517 2.398 3.152 0.00 015 1.501
10−4 0.0 991 3.5315 5.701 0.0 114 4.701 5.839 0.0 032 3.669
5 2.2 512 −1.0512 1.7 2.8 906 1.0956 1.8424 0.4 646 −1.2708
5 2.9 388 0 1.818 2.4 535 1.1047 1.8777 0.5 978 −0.5632
5 5.2 894 1.7273 2 1.8 447 1.0816 2.0101 0.8 364 0.2166
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Figure 5. The reduced mass density α(x) (top) and the reduced radial ve-
locity v(x) (bottom) for semicomplete ‘champagne flow’ solutions with a
central void inside x∗ = 1 in cases with n = 0.9 (thus γ = 1.1) and a density
on the void boundary α∗ = 10−4. In both panels, the dashed curve represents
the sonic critical curve. In the bottom panel, the dotted line stands for the
line v = 0. The solid curve on the left-hand side is the downstream void
solution and the solid curves on the right-hand side are the corresponding
upstream outflow solutions with the downstream shock position xsd = 1.8
(inflow), 2.068 (breeze), 3.088 (outflow) and 5.701 (outflow). Here, xsd =
2.068 is the limit to ensure an asymptotic outflow, i.e. xmin2 ≈ 2.068. In
this case, xmin1 = 1.261. Numerical data for these solutions are tabulated in
Table 4.

Fig. 4); while for small α∗, α increases with increasing x, so the
density maximum is at the downstream side of the shock. The latter
corresponds to a shell-like structure in self-similar expansion (see
Fig. 5).

With downstream void solutions and upstream outflow and breeze
solutions connected by shocks, we establish semicomplete poly-
tropic ‘champagne flow’ solutions with central voids. Similar to
LP-type solutions with shocks, there are also one maximum xmax

and two minimum limits xmin1 and xmin2 imposed on the downstream
shock position xsd in order to obtain ‘champagne flow’ solutions.
Systematic numerical explorations for cases of n = 0.7, 0.8 and
0.9 show that in general xmin2 > xmin1. For xmin1 < xsd < xmin2, a
void solution can be matched with an asymptotic inflow to produce
ISECE solutions, while for xsd > xmin2, a central void solution can be
matched with an asymptotic outflow to produce ‘champagne flow’
solutions. For xsd = xmin2, the upstream corresponds to a breeze or
a contraction with B = 0. The analysis here parallels that in the
previous section for cases without central voids; in particular, the
parameters xmin1 and xmin2 are determined not only by n and α∗, but
also by the expanding void boundary x∗. Numerical explorations
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suggest that for a certain n, with the increase of α∗, xmin1 increases
and xmin2 decreases. Hence for a sufficiently large α∗, we expect
xmin2 < xmin1 for which ISECE solutions are not allowed. This is
consistent with polytropic cases without central voids.

5 A NA LY SIS AND DISCUSSION

5.1 Comparison with numerical simulations

To adapt our self-similar solutions for modelling an astrophysical
cloud system, we need to first specify the parameter k related to
the sound speed squared. By varying k, one can model clouds of
different scales using a single self-similar solution. Parameter k is
determined by the thermodynamic parameters, including thermal
pressure p, mass density ρ and temperature T. A useful relation for
a conventional polytropic gas derived from transformation (7) is

k = p

ργ (4πG)γ−1
= kBT

μργ−1(4πG)γ−1
, (33)

where μ is the mean molecular mass of gas particles. For a typical
value provided by the classification of Habing & Israel (1979), the
UC H II regions have an electron number density ne > 3000 cm−3

(corresponding to a mass density ρ > 5 × 10−21 g cm−3 for a fully
ionized hydrogen gas) and the compact H II regions have 1000 <

ne < 3000 cm−3 (corresponding to 1.7 × 10−21 < ρ < 5 ×
10−21 g cm−3 for mass density ρ). Typically, the temperature of
H II regions is of order of ∼104 K. For a fully ionized hydrogen gas,
we assume that μ = mp/2, where mp is the proton mass. The value
of the polytropic index γ does influence very much the resulting k
and thus k should be evaluated specifically. For nearly isothermal
cases, with relation (33), we estimate k for UC and compact H II

regions to be k ∼ 1011 ∼ 1012 cgs unit. One should be aware that
κ and thus k vary with the gas temperature and density in a cloud.
Here, we presume a constant k to convert self-similar variables to
real space variables as a first approximation.

We now compare our self-similar solutions of quasi-spherical
symmetry with previous numerical simulations. Tenorio-Tagle et al.
(1986) performed a numerical study for a similar scenario as ours,
i.e. a nascent central massive protostar ionizes and heats the ambient
neutral gas and then leads to ‘champagne flows’. In their simula-
tion, the radiative cooling rate is assumed to be low and thus our
polytropic approach may be applicable. Franco et al. (1990) gave
an analytical model for the formation and expansion of H II regions
and have their solutions compared with simulations. We intend to
demonstrate that our self-similar polytropic analysis of the problem
gives qualitatively similar results.

In the simulation of Tenorio-Tagle et al. (1986), computations
were carried out following the progressive ionization of a diffuse gas
and subsequent dynamical evolution, in a globular cluster soon after
the star formation has been initiated. The residual gas is initially
in a hydrostatic equilibrium in the gravitational field at a uniform
temperature and all the ionizing UV radiation comes from stars at the
very centre of the cluster. We emphasize that only the cases in which
the gas is fully ionized correspond to our conventional ‘polytropic
champagne flow’ model. In the simulation, the initial mass density
at the centre ρ0, initial temperature T0 and the UV photon flux F
from the central star completely determine the evolution in spherical
symmetry. To translate these parameters into our self-similar form
of solutions, we first explore the time evolution of a ‘champagne
flow’ shock. In our self-similar model, the shock radius rs obeys
rs = k1/2xstn. With such a self-similar formula, we can fit the scaling
index n and k1/2xs to shock positions obtained by the numerical
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Figure 6. Shock position evolution with time t in a ‘champagne flow’ for
our self-similar model (solid line) and the numerical simulation of Tenorio-
Tagle et al. (1986) (asterisks). For the simulation, the adopted parame-
ters are central initial density ρ0 = 2 × 10−21 g cm−3, initial temperature
T0 = 3000 K and the ionization UV flux F = 2 × 1051 photon s−1. For
the self-similar model, the best-fitting parameters are n = 1.0583 and
log(k1/2 xs) = 6.0356 in cgs unit.

simulation for case F of Tenorio-Tagle et al. (1986), and the result
comparison is shown in Fig. 6 with relevant parameters in caption.
We see an almost perfect fit, suggesting that the dynamical evolution
of ‘champagne flows’ approaches a self-similar form. This fitting
gives a value of n = 1.0583 and log(k1/2xs) = 6.0356 in cgs unit
(strictly speaking, we need a general polytropic gas for γ > 1). The
value of n is fairly close to the isothermal case of n = 1, consistent
with the model analysis of the numerical simulation that the gas
evolution is nearly isothermal (Tenorio-Tagle et al. 1986).

We now generate a global ‘champagne flow’ solution grossly
comparable to fig. 2 of Tenorio-Tagle et al. (1986) by fitting pa-
rameters. We first choose a central reduced density α0 ∼ 1 × 10−5

such that the initial central density yields the value used in the sim-
ulation. We expediently choose n = 0.9 (hence the parameter γ =
2 − n = 1.1) to model the initial density profile l = −2/n = −2.22.
Note that parameter n for the ‘champagne flow’ solution is slightly
different from the value we obtain from the fitting. With ρ0 and
T0 specified in the simulation, we estimate kd = 3.6 × 1015 cgs
unit with expression (33). We still have the freedom to require the
shock travelling to rs = 2.51 × 1019 cm at t = 1.3 × 105 yr, giving
xsd = 1.86. With these parameters, we model ‘champagne flows’ in
diffuse H II regions with radius r up to 1021 cm (i.e. ∼300 pc). The
full solution is shown in Fig. 7. The time-scale of 1.3 × 105 yr is
regarded as the duration of the formation phase and the initial time
for a ‘champagne flow’, and the time-scale 5.1 × 106 yr is regarded
as the lifetime of a ‘champagne flow’.

The orders of magnitude of all variables are consistent with typ-
ical values; e.g. the expansion velocity is several tens km s−1 and
the temperature is about ∼104 K. The enclosed mass at r = 1021 cm
(∼300 pc) is about 850 M, consistent with the value of ∼800 M
given by the numerical simulation and with the typical value for dif-
fuse H II regions. The enclosed mass does not vary with time t, con-
firming the cut-off radius chosen at r = 1021 cm. As time evolves,
the central number density decreases from 10−0.5 to 10−3.5 cm−3

and the central thermal pressure decreases accordingly from 10−12

to 10−15 dyne cm−2.
We can also compare variable profiles with the case F of Tenorio-

Tagle et al. (1986). The velocity profiles are very similar and we
clearly see an expanding shock. As time evolves, the shock strength
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Figure 7. Self-similar ‘champagne flow’ solutions for radius up to 1021 cm
(∼300 pc) at time t = 1.3 × 105 yr (solid curves) and t = 5.1 × 106 yr
(dashed curves). From top to bottom, the panels show number density,
velocity, pressure, enclosed mass and temperature of the gas, respectively.
The self-similar shock solution is obtained with n = 0.9, γ = 1.1, α0 =
1 × 10−5 and downstream shock position xsd = 1.86. The downstream
sound scaling factor kd is 3.6 × 1015 cgs unit, and the upstream sound
scaling factor ku is 3.38 × 1015 cgs unit. The self-similar variables on the
downstream side of the shock are (xsd, αd, vd) = (1.86, 2.80 × 10−5, 1.37),
and the corresponding upstream variables are (xsu, αu, vu) = (1.92, 6.88 ×
10−6, 0.46). At large x, the numerical solution matches with asymptotic
solution (18) and (19) with A = 31.942 and B = 1.006 at large x.

becomes weaker. In both numerical simulation and our model anal-
ysis, we observe a density peak on the downstream side of the shock
and a significant temperature gradient on the upstream side, which
cannot be accounted for by previous isothermal solutions. The up-
stream density and pressure profiles are also similar; however, the
downstream density, pressure and temperature profiles (near centre)
are somewhat different. In Tenorio-Tagle et al. (1986), temperature,
pressure and density are initially very uniform behind the cham-
pagne shock but at the end of the calculations show large inward
gradients. In Fig. 7, our model also produces quasi-uniform temper-
ature, pressure and density behind the shock at the beginning (t =
1.3 × 105 yr), but we do not observe large inward gradients at
the end. These differences are primarily due to the different phys-
ical assumptions adopted in the simulation and our self-similar
solutions. Tenorio-Tagle et al. (1986) treated the gas dynamics in
protoglobular clusters and neglected the gas self-gravity as the gas
mass is only about 0.1 per cent that of the stars. As shown above,
our self-similar solutions neglect the gravity of the central massive
protostar but include the self-gravity effect. Another important fac-
tor that introduces such difference is that in the simulation both
forward champagne shock and reverse rarefaction wave are taken
into account. Our self-similar model can accommodate forward
moving shock, so we only have the principle outgoing champagne
shock.

We calculate the total energy Etotal defined as the energy of the
gas under consideration in an infinite space. The total energy at time
t can be expressed as

Etotal = EK + EG + EI

=
∫ rout

rin

(
1

2
ρu2 − GMρ

r
+ i

2
p

)
4πr2 dr

= k5/2t5n−4

2G

∫ xout

xin

[
αv2x2 − 2

(3n − 2)
α2x3(nx − v)

+iαγ x2

]
dx, (34)

where EK, EG and EI are the kinetic, gravitational and internal ener-
gies of the gas, respectively, rin, rout, xin, xout are the inner and outer
boundaries of the gas under consideration and i is the degree of
freedom of the gas particle presumed to be 3. Note that one fixed
rout at different times corresponds to different values of xout. In this
solution, Etotal = 5.5 × 1048 erg at t = 1.3 × 105 yr, and Etotal = 8.1
× 1048 erg at t = 5.1 × 106 yr, so there is net energy input. Espe-
cially, we see the kinetic energy EK = 6.4 × 1047 erg at t = 1.3 ×
105 yr, indicating a small fraction of the total energy, and EK = 3.9
× 1048 erg at t = 5.1 × 106 yr, indicating a fairly large fraction of
the total energy. The increase of kinetic energy shows clearly the
development of a champagne flow. The gravitational energy is of
order 1044 erg, much less than the kinetic energy throughout this
duration. This confirms that the gas is not bounded and must have
an outflow. We are also able to consider qualitatively the local en-
ergy exchange throughout the self-gravitating gas with relation (16).
In Fig. 7, ∂p/∂r is positive on the downstream side and negative
on the upstream side. For γ = 1.1, the downstream and upstream
sides locally loses and gains energy, respectively. In summary, the
profiles on the order of magnitudes, and the time evolution of our
self-similar solution in modelling this case are grossly consistent
with the numerical simulation result of Tenorio-Tagle et al. (1986),
which lends support to our polytropic self-similar ‘champagne flow’
solution as a gross description of dynamics of H II regions.

Recent studies further suggest that the inclusion of stellar winds is
also important and even necessary sometimes in understanding the
large-scale dynamics of H II regions. Comerón (1997) found that a
shocked stellar wind in the central region produces important mor-
phological differences as compared to windless cases. Moreover,
Comerón (1997) suggested that the spatial scale of an H II region
undergoing ‘champagne flow’ is systematically larger and the gas
flow is generally faster as driven by a central stellar wind. Arthur
& Hoare (2006) provided two-dimensional cylindrical radiative–
hydrodynamic simulations of cometary H II regions using cham-
pagne flow models, by taking into account of strong stellar winds
from the central ionizing star. In these simulations, the hydrody-
namics and radiative transfer are coupled through an energy equa-
tion whose source term depends on the photoionization heating and
radiative cooling rates; while with our polytropic approach, com-
plicated energetic processes are relegated to the choice of γ . Arthur
& Hoare (2006) studied the hydrodynamics of a compact H II re-
gion with a radius 0.13 pc and at a time ∼200 yr after the triggering
of UV ionizing photons and powerful stellar winds; a stellar wind
bubble around the centre with a radius up to 0.03 pc is formed.
Inside such a stellar wind bubble, the mass density is about three
orders of magnitude lower than that of the surrounding medium,
and the density of the flow does not vary much with radius in the
vicinity of the bubble boundary. Because the central wind bubble
is effectively depleted of mass and the gravity force of the central
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Figure 8. Self-similar ‘champagne flow’ solution with an initial central void radius of 1017 cm at time 200 yr (solid curve), 500 yr (dashed curve) and 800 yr
(dotted curve). The four panels show mass density ρ, flow velocity u, thermal pressure p and temperature T of the gas, respectively. The central void has a
radius of x∗ = 2.68, corresponding to r∗ = 0.03, 0.06, 0.09 pc with increasing time t. The self-similar solution is obtained with parameters: n = 0.8, γ = 1.2,
α∗ = 5.5 × 10−7 and downstream shock position xsd = 9. The downstream sound parameter kd is 2.5 × 1017 cgs unit, and the upstream sound parameter
ku is 4.9 × 1016 cgs unit. The self-similar variables on the downstream side of the shock are (xsd, αd, vd) = (9, 1.07, 6.86), and the corresponding upstream
variables are (xsu, αu, vu) = (20.4, 0.111, 8.88). At large x, the solution matches with asymptotic solution (18) and (19) with A = 135 and B = 22 at large x.
The enclosed mass by radius of 1018 cm is 1.38 × 106, 1.23 × 106 and 1.06 × 106 M as time evolves. The total energy of gas is 5.86 × 1053, 5.94 × 1053

and 5.98 × 1053 erg, respectively.

massive star may be neglected, given a typical Bondi–Parker radius
of ∼102 au, we thus approximate such a stellar wind bubble as a
central ‘void’ and model it using our polytropic self-similar void
‘champagne flow’ model.

In the scenario as outlined by Arthur & Hoare (2006), the cen-
tral star has an effective temperature Teff = 3 × 104 K, a stellar
wind mass-loss rate Ṁ = 10−6 M yr−1 and a terminal wind speed
Vw = 2000 km s−1. The initial ambient medium has a number den-
sity of n0 = 6000 cm−3 and a temperature of T0 = 300 K. In our self-
similar model for ‘champagne flows’, the radius of a void boundary
is r∗ = k1/2 x∗tn. By taking n = 0.8, we have k1/2 x∗ = 1.34 ×
109 cgs unit to obtain a r∗ = 0.03 pc central void at a time of
t = 200 yr. The n value depends on the energetic process, includ-
ing plasma cooling and radiative heating, of the flow. We further
estimate from relation (33) for a downstream sound parameter kd =
2.5 × 1017 cgs unit, and for a self-similar void boundary x∗ = 2.68.
Another parameter that needs to be specified is the mass density on
the expanding void boundary, denoted as α∗ here. The simulation
of Arthur & Hoare (2006) gives an electron number density on the
void boundary as n∗

e = 104 cm−3 at t = 200 yr. With relation ρ∗ =
α∗/(4πGt2), we estimate α∗ = 5.5 × 10−7. We emphasize that the
length and time-scales in this case are quite different from those in
the previous case of Tenorio-Tagle et al. (1986). As an important
advantage, this suggests that self-similar models are suitable to give
a unified description for cloud systems on quite different scales.

As n < 1 in this case, we have one more degree of freedom to
specify the shock position. In principle, the shock position is deter-
mined by both the initial density (mass parameter A) and the initial
gas motion (velocity parameter B). We find that the lower limit of
the downstream shock position xsd is 8.8, according to condition
(26); thus, the minimum shock position at t = 200 yr is ∼3.04 ×
1017 cm (i.e. about 0.1 pc). The numerical simulation of Arthur &

Hoare (2006) studied the gas dynamics up to a radius of 0.13 pc. As
an example of illustration, we assume xsd = 9 and show the resulting
solution in Fig. 8. This solution clearly shows that as time evolves,
the void boundary expands, meanwhile the density and pressure in
the vicinity of void boundary decrease by several orders of magni-
tude, consistent with the simulation. However, we see a very high
density near the ‘champagne flow’ shock on the downstream side,
and as time evolves, the density profile becomes more and more
smooth. For our self-similar ‘champagne flow’ model with central
expanding voids, the velocity can rise up to several hundred km s−1.
In Fig. 8, we also see clearly that the case is non-isothermal, and
on the downstream side of the shock the temperature is the highest
as expected. We note that at t = 800 yr, the shock is at ∼0.3 pc,
beyond the scale of UC or compact H II regions. In reality, a cham-
pagne shock is so fast that even at a short time-scale of ∼800 yr the
shock is well in the surrounding diffuse interstellar medium (ISM).

Compared with numerical simulations, the advantage of our
semi-analytical self-similar approach is clear. We can generate self-
similar shock solutions to model different H II regions by varying a
few parameters. The self-similar processes and shock solutions of
this paper describe the basic hydrodynamics of polytropic ‘cham-
pagne flows’ and serve as test cases for bench marking numerical
simulations.

5.2 Asymptotic free-fall solutions around a central protostar

So far we have constructed ‘champagne flow’ solutions with LP-
type asymptotic solutions on the downstream side as x → 0+, be-
cause such asymptotic solution satisfies boundary condition (23).
Complementarily, free-fall asymptotic solutions (20) and (21) at
x → 0+ represent gas infall and collapse during the protostar for-
mation phase; and the surrounding gas and the infall momentum
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Figure 9. Reduced mass density α(x) (top) and reduced radial flow ve-
locity v(x) (bottom) for global solutions in cases with n = 0.9 (thus γ =
1.1) whose downstream side is free-fall solution and the upstream side cor-
responds to either outflow, inflow, breeze or contraction. In both panels,
the dashed curve represents the sonic critical curve; in the bottom panel
the dotted line is v = 0. The downstream solution is connected with the
upstream solutions with solid curves via shocks. The downstream solu-
tion is integrated from a sonic critical point (x, α, v) = (0.3237, 5.0050,
−0.8455) towards x → 0+ with a central free-fall asymptotic solution of
m(0) = 0.546, and outwards to the downstream shock positions. At the in-
ner most part the downstream solution corresponds to an inflow, and outer
part of the downstream side is an outflow. The static point in this case is
at xstatic ∼ 0.74. In both panels, the upstream solutions from top to bottom
correspond to xsd = 2.5 (labelled 1), 1.7747 (labelled 2), 1 (labelled 3)
and 0.7 (labelled 4). Solution 1 has inner inflow and outer outflow on the
downstream side and upstream outflow with A = 4.368 and B = 1.76. The
shock parameters are (xsd, αd, vd) = (2.5, 0.8036, 1.3249) and (xsu, αu, vu) =
(2.5003, 0.6453, 1.0981). Solution 2 has inner inflow and outer outflow on
the downstream side and an upstream breeze with A = 1.8635 and B = 0 at
large x. The shock parameters are (xsd, αd, vd) = (1.7747, 1.0715, 0.8470)
and (xsu, αu, vu) = (1.7796, 0.5575, 0.1558). Solution 3 has an inner inflow
and outer outflow on the downstream side and upstream inflow with A =
0.6930 and B = −1.6963 at large x. The shock parameters are (xsd, αd, vd) =
(1, 1.7883, 0.2668) and (xsu, αu, vu) = (1.0118, 0.6348, −0.8942).
Solution 4 has a downstream inflow and upstream inflow with A = 0.4899
and B = −2.1564 at large x. The shock parameters are (xsd, αd, vd) =
(0.7, 2.4355, −0.0567) and (xsu, αu, vu) = (0.7054, 0.9837, −1.0785).

associated with the star formation process may be sustained for a
while during the evolution after the onset of stellar nuclear burn-
ing and UV photoionization of the surrounding gas. Cochran &
Ostriker (1977) have investigated consequences of the birth of a
massive star within a dense cloud with a free-fall density profile,
and found that the radiation pressure from the star sweeps up grains
from the infalling gas to form a dust shell which bounds the H II

region. Here, we utilize such free-fall solutions as the downstream
side and construct global solutions with shocks to model possible
dynamic evolutions of H II regions surrounding a nascent protostar
in nuclear burning. We present such solutions in Figs 9 and 10 where
parameter m(0) for free-fall solutions is different. In dimensionless
form, m(0) stands for a central mass point, and with dimensions in
self-similar transformation (7), M(0, t) ∝ t3n−2 m(0); therefore, m(0)
scales as the central mass accretion rate. For m(0) = 0.546 (Fig. 9),
the free-fall solution crosses the sonic critical curve smoothly at
x = 0.3237, and can also be connected to the upstream solutions

Figure 10. Reduced mass density α(x) (top) and reduced velocity v(x) (bot-
tom) for global solutions in cases of n = 0.9 (thus γ = 1.1) whose down-
stream side is a free fall and upstream side corresponds to either outflow,
inflow, breeze or contraction. In both panels the dashed curve represents
the sonic critical curve. The downstream solution is connected with up-
stream solutions of solid curves via shocks. The downstream solution is
integrated from a sonic critical point (x, α, v) = (1.7727, 1.0050, 0.5463)
towards x → 0+ for a free-fall asymptotic solution of m(0) = 4.638. Most
of the downstream side is an outflow, while the inner most part is a free
fall. In both panels, the upstream solutions from top to bottom correspond
to xsd = 1.6 (labelled 1), 1.4269 (labelled 2) and 1 (labelled 3). The en-
tire upstream solution labelled 1 has an outflow with A = 2.8032 and
B = 0.6058. Shock parameters are (xsd, αd, vd) = (1.6, 1.2326, 0.5110) and
(xsu, αu, vu) = (1.6002, 0.9575, 0.2443). Solution labelled 2 has an upstream
contraction with A = 2.115 and B = 0 at large x. Shock parameters are
(xsd, αd, vd) = (1.4269, 1.5391, 0.4705) and (xsu, αu, vu) = (1.4290, 0.9057,
−0.0988). Solution labelled 3 has an inflow for the entire upstream portion
with A = 1.0063 and B = −1.6727. Shock parameters are (xsd, αd, vd) =
(1, 2.9346, 0.3423) and (xsu, αu, vu) = (1.0271, 0.7726, −1.2514).

via shocks at various locations. The free-fall solution crosses the
line v = 0 at xstg = 0.74. This stagnation radius expands with time
in a self-similar manner; inside the stagnation radius the gas falls
inwards, while outside the stagnation radius the gas expands out-
wards. Therefore, if xsd < xstg, the entire global solution corresponds
to an inflow (solution 4 of Fig. 9). This situation describes an ac-
cretion shock during a protostar formation phase. If xsd > xstg, the
outer part of the downstream side is an outflow. This describes the
scenario that the shock sweeps up the gas and turns the gas from
infall to expansion on the downstream side near the shock front.
Similar to the situation with downstream LP-type solutions, there
exists one specific xsd, from which the upstream solution is a breeze
with B = 0. In this case, xsd = 1.7747 gives an upstream breeze
(solution 2 of Fig. 9). Thus for xsd < 1.7747, the upstream side
corresponds to an asymptotic inflow far from the centre (solution 3
of Fig. 9) and for xsd > 1.7747, the upstream side corresponds to an
asymptotic outflow (wind) far from the centre (solution 1 of Fig. 9).
Another example shown in Fig. 10 has m(0) = 4.638. This free-fall
solution does not cross the sonic critical curve smoothly and can
be connected with upstream solutions via shocks. In an analogous
manner, we show the possibility to obtain an outflow (solution 1
of Fig. 10), contraction (solution 2 of Fig. 10) and inflow (solution
3 of Fig. 10) for the upstream side. Solutions 1 and 2 of Fig. 9
and solution 1 of Fig. 10 have asymptotic outflow or breeze on the
upstream side and in the outer part of the downstream side, which
is very similar to champagne flow solutions obtained with a down-
stream LP type, with different behaviours in central regions. With a
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free-fall asymptotic solution, the gravity of the central massive star
is not neglected and the gas immediately surrounding the massive
protostar still undergoes infall when the outer envelope starts to
expand. Hence, solutions with free-fall centre are plausibly suitable
to describe the early stage of ‘champagne flows’. In general, with
central free falls on the downstream side, we can also obtain asymp-
totic outflow, inflow, breeze and contraction for the upstream side,
by varying the downstream shock position xsd in a proper range.

Central free-fall solutions describe the core collapse phase in star
formation. For this purpose, Wang & Lou (2008) explored such
solutions with free-fall inner core and an inflow or outflow in the
outer envelope, for general polytropic cases in their fig. 2. The inner
and outer portions are connected by magnetohydrodynamic (MHD)
shocks. Such shocks are interpreted as accretion shocks, typically
found in a star formation process, or around accreting black holes.
Here we specifically emphasize that such shocks may also arise by
the UV photoionization of ambient medium surrounding a nascent
protostar. Under certain situations, the UV flux from the burning star
might not be intense and rapid enough to turn the surrounding gas
from infall to expansion by ionization and heating. Meanwhile the
IF creates a weak shock travelling outwards, and the upstream side
may have an outward velocity. Another possibility is that the gravity
of the central star is so large that the gas immediately surrounding
the star keeps falling towards the protostar, but the outer part of the
downstream side and the corresponding upstream side expand. In
summary, with different initial conditions of gas and different phys-
ical conditions of a burning protostar, the radiative influence of the
nascent protostar on the dynamic evolution of the surrounding gas
may give rise to various self-similar solutions, including the clas-
sical champagne flow solutions, the ISECE solutions and the inner
free fall with outer inflow/outflows or contraction/breeze solutions.
The solutions constructed in this paper (classical champagne flows)
is suitable for situations that the gas is initially static and the proto-
star ionizes the entire gas immediately, and then the gas begins to
expand in a ‘champagne phase’ with an outgoing shock.

6 C O N C L U S I O N S

We present newly established self-similar polytropic shock solu-
tions with and without central voids to model ‘champagne flows’
in H II regions featuring various asymptotic dynamic behaviours.
As a substantial generalization of the isothermal model of Tsai &
Hsu (1995) and Shu et al. (2002), we found similarities and differ-
ences in self-similar polytropic processes. Our general polytropic
‘champagne flow’ model allows a much larger freedom to choose
the polytropic index γ ≥ 1 for 2/3 < n < 2; for a conventional
polytropic gas as a subclass of examples, the power-law index l
of the initial mass density profile ρ ∝ r−l is linked to γ by l =
2/n = 2/(2 − γ ). Together, our model is adaptable to a wide range
of initial mass density profile with 1 < l < 3 for H II regions. For
conventional polytropic cases of 1 < γ < 4/3 (i.e. 2/3 < n < 1 and
2 < l < 3), we have more freedom for convergent initial conditions.
In this fashion, our conventional polytropic shock flow solutions
are determined not only by the initial mass density profile (i.e. mass
parameter A), but also by the motion at the very early stage (i.e.
velocity parameter B). The dimensionless shock positions or the
dimensional shock speed and strength are determined by the initial
conditions related to A and B and the central density at α0. Our
self-similar shock flow solutions give a plausible description for
the ‘champagne flow’ phase for the dynamics of H II regions. We
conclude that general polytropic ‘champagne flows’ with the initial

density power-law index 1 < l < 3 may evolve in a self-similar
manner.

We have established novel ‘champagne flow’ shock solutions
with an expanding void surrounding the centre to model a certain
cloud core whose inner part has fallen into a nascent protostar.
We observe that the evolution of central void boundary plays an
important role in determining the asymptotic solution to approach
and the general behaviour of solutions as well. With even one more
free parameter, the ‘champagne flow’ shock solutions with central
voids can model the dynamics of H II regions more realistically,
including the effect of central stellar wind bubbles.

We have further explored possibilities of asymptotic inflows or
contractions far from the cloud centre. In addition, we also estab-
lish global shock solutions with the asymptotic free-fall solution
approaching the centre. In general, by varying dimensionless shock
position, we connect the downstream side, with either LP-type so-
lutions, EdS solutions or free-fall solutions, to upstream solutions
which eventually merge into asymptotic outflow, breeze, contrac-
tion and inflow. Within the theoretical framework of the self-similar
polytropic fluid, global shock solutions with different behaviours
correspond to different forms of hydrodynamic evolution of H II re-
gions after the nascence of a central massive protostar. Apparently,
even within the framework of self-similarity, dynamic evolution of
polytropic H II regions depends on the initial and boundary con-
ditions of molecular clouds. Numerical simulations are needed to
probe and connect various self-similar evolution phases.

Finally, we note that our work is also an extension of the isother-
mal model analysis by Chevalier (1997) as applied to the dynamics
of planetary nebulae. Our model involves a polytropic equation of
state and the gas self-gravity. In this context, the void boundary
obeying the relation nx − v = 0 is a surface of contact discontinu-
ity sandwiched between the outer slower wind and the inner faster
wind whose mass is negligible. The self-similar isothermal model
of Chevalier (1997) corresponds to n = 1 here. The polytropic
shocks shown in our global solutions are physically created by the
persistent driving of inner faster winds. Even within the isothermal
model framework, we can also accommodate two different constant
temperatures across an outgoing shock (e.g. Shen & Lou 2004; Bian
& Lou 2005).
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A P P E N D I X A : A N IN VA R I A N T F O R M

Transformation (7) leads to an initial density profile ρ ∝ r−2/n as the
outer part of a SPS. To model an initial mass density profile other
than a SIS (e.g. Galli et al. 1999) in the self-similarity framework,
Shu et al. (2002) developed an invariant self-similar transformation
for an isothermal gas by neglecting the self-gravity. We extend
below this invariant transformation to a conventional polytropic
gas.

The independent similarity variable is x = r/(k1/2tn) and the
reduced radial velocity v(x) still reads as v = u/(k1/2tn−1). However,
the mass density ρ is generalized to

ρ(r, t) = D

rl
R(x), (A1)

where R(x) is a new reduced density dependent on x only, l is a
scaling index and D is a constant parameter to be determined. With
the conventional polytropic relation p = κργ for constant κ and γ ,
the thermal pressure p is

p(r, t) = κ
Dγ

rγ l
Rγ . (A2)

We now determine the relation between k and κ from the radial
momentum equation without self-gravity:

∂u

∂t
+ u

∂u

∂r
= − 1

ρ

∂p

∂r
. (A3)

The left-hand side (LHS) of equation (A3) relates to the sound scal-
ing parameter k and the right-hand side (RHS) relates to the specific
entropy coefficient κ . We substitute self-similar transformation (A1)
and (A2) into both sides of the radial momentum equation (A3) to
obtain
∂u

∂t
+ u

∂u

∂r
= k1/2tn−2[(n − 1)v + (v − nx)v′], (A4)

− 1

ρ

∂p

∂r
= −κDγ−1γ (k−1/2t−n)(γ−1)l+1x−(γ−1)l

×
(

− l

x
Rγ−1 + R′Rγ−2

)
, (A5)

where the superscript ‘′’ over v(x) and R(x) indicates the first deriva-
tive in x. By expressions (A4) and (A5) and in order to remove the
explicit t dependence in the self-similar form of equation (A3), we
require

−n[(γ − 1)l + 1] = n − 2. (A6)

Together with n + γ = 2 for a conventional polytropic gas, we
obtain l = 2/n for n �= 1. For n = 1, there is no constraint on l.
For a conventional polytropic gas, the possible initial mass density
profile described by this invariant self-similar transformation is not
arbitrary, but is pre-set by the scaling index n or by the polytropic
index γ . Here D provides a measure for the magnitude of density
profile and κ is the constant in the polytropic equation of state;
both parameters are determined physically. For simplicity of the
formulation, we may choose the sound parameter k so that

κ = k1/nDn−1. (A7)

This relation is verified by a dimensional analysis. As a result, these
parameters disappear in the following ODEs:

[(nx − v)2 − γ x2−lRγ−1]R′

= Rv

x
[(l − 2)(v − nx) + (n − 1)x] − γ lx1−lRγ ,

(A8)

[(nx − v)2 − γ x2−lRγ−1]v′

= 2γ x1−lRγ−1(v − x) + (n − 1)v(nx − v). (A9)

For n �= 1 and l = 2/n, coupled equations (A8) and (A9) describe
non-isothermal self-similar flows of a conventional polytropic gas.
For n = 1 and γ = 1, the value of l is arbitrary; for l = 2, these
two coupled non-linear ODEs reduce to the isothermal formulation
of Shu et al. (2002) with two decoupled ODEs for l = 2. For n =
1 and γ = 1 with l �= 2, we need to use the two decoupled ODEs
(32) and (33) in section 4 of Shu et al. (2002). In contrast to the
isothermal case, the non-linear ODEs here remain coupled for γ �=
1. In summary, with our self-similar transformation, hydrodynamics
for a spherical gas with ignorable gravity can be expressed by a set
of two coupled non-linear ODEs (A8) and (A9).

In cases with γ �= 1 and for x → +∞, the asymptotic boundary
conditions are v → 0 and R → 1 for n < 1. The asymptotic solution
at large x yields

v = Hx1−1/n + 2γ

n
x1−2/n + · · · ,

R = 1 + 3H (
1

n
− 1)x−1/n + · · · , x → +∞, (A10)
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where H is an arbitrary constant but should be chosen for a positive
mass density everywhere. The condition l = 2/n has already been
taken into account in this solution. This form of asymptotic solution
at large x differs from equation (34) of Shu et al. (2002), because
for non-isothermal cases the leading terms in non-linear ODEs (A8)
and (A9) are different; however, the second term on the RHS of the
expression of v, reduces to the v expression in equation (34) of
Shu et al. (2002) for n = 1 and γ = 1. The form (A10) is similar
to the form of (18) and (19) in the overall scaling. The integration
constant H in the invariant form is an analogy of the ‘velocity
parameter’ B, while the ‘mass parameter’ A is already absorbed
into the parameter D in the invariant form. To make this asymptotic
solution applicable, we should require H = 0 in cases of n < 1 and
thus γ > 1. The boundary conditions at x → +∞ correspond to the
initial conditions of the fluid. Therefore, the initial density scales
as r−l . More precisely, this new self-similar transformation requires
the initial density profile to scale as r−2/n, identical with the scaling

we obtain in the main text using self-similar transformation (7). For
x → 0+, the asymptotic solution reads

v ∼ 2x/3, R ∼ Ixl, as x → 0+, (A11)

where I > 0 is an arbitrary parameter for a positive mass density.
This v expression of asymptotic solution (A11) is independent of
l, different from the v expression (35) in Shu et al. (2002), but
it is similar to asymptotic solution (24) in the main text; the R
expression of our asymptotic solution is similar to the R expression
(35) of Shu et al. (2002), and the parameter I here is proportional to
the central reduced mass density α0. In the isothermal case with n =
1 and γ = 1, relation (A6) is satisfied automatically and parameter
l is thus arbitrary. Here lies a fundamental difference between the
conventional polytropic case and the isothermal case.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 390, 1619–1634

 at C
alifornia Institute of T

echnology on D
ecem

ber 23, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

